精英家教网 > 高中数学 > 题目详情
12.证明:
(1)$\frac{1-2sinxcos2x}{co{s}^{2}2x-si{n}^{2}2x}$=$\frac{1-tan2x}{1+tan2x}$.
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(2-sin2α).

分析 (1)将所证关系式的左端利用平方差公式,同角三角函数基本关系式转化为:左端=$\frac{cos2x-sin2x}{cos2x+sin2x}$,整理即得右端.
(2)利用同角三角函数基本关系式化简左边=1+$\frac{2}{co{s}^{2}α}$-cos2α,同理可证右边=1+$\frac{2}{co{s}^{2}α}$-cos2α,可得左边等于右边,从而得证.

解答 证明:(1)左边=$\frac{1-2sin2xcos2x}{co{s}^{2}2x-si{n}^{2}2x}$
=$\frac{(cos2x-sin2x)^{2}}{(cos2x+sin2x)(cos2x-sin2x)}$
=$\frac{cos2x-sin2x}{cos2x+sin2x}$
=$\frac{1-tan2x}{1+tan2x}$=右边;
(2)∵左边=(2-cos2α)(2+tan2α)
=4+2tan2α-2cos2α-sin2α
=4+2×($\frac{1}{co{s}^{2}α}$-1)-2cos2α-1+cos2α
=1+$\frac{2}{co{s}^{2}α}$-cos2α,
右边=(1+2tan2α)(2-sin2α)
=(1+2tan2α)(1+cos2α)
=1+cos2α+2tan2α+2sin2α,
=1+cos2α+2×($\frac{1}{co{s}^{2}α}$-1)+2-2cos2α,
=1+$\frac{2}{co{s}^{2}α}$-cos2α,
∴左边=右边,得证.

点评 本题考查三角函数恒等式的证明,考查转化思想与推理证明能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知全集U={x|x<10,x∈N+}且(∁UA)∩B={1,9},(∁UA)∩(∁UB)={6,8},A∩B={2,4},求集合A和B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中k为常数.
(1)若k=-1,函数f(x)是否具有周期性?若是,求出其周期;
(2)在(1)的条件下,又知f(x)为定义在R上的奇函数,且当0≤x≤1时,f(x)=$\frac{1}{2}$x,则方程f(x)=-$\frac{1}{2}$在区间[0,2016]上有多少个解?(写出结论,不需过程)
(3)若k为负常数,且当0≤x≤2时,f(x)=x(x-2),求f(x)在[-3,3]上的解析式,并求f(x)的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.利用定积分的几何意义,比较${∫}_{0}^{1}$exdx,${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:
(1)$\frac{1-2sin2xcos2x}{co{s}^{2}2x-si{n}^{2}2x}$=$\frac{1-tan2x}{1+tan2x}$;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(2-sin2α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过点(3,1)作圆(x-2)2+(y-3)2=1的切线l,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}:$\frac{1}{3}$,-$\frac{1}{2}$,$\frac{3}{5}$,-$\frac{2}{3}$,…
(1)写出数列的通项公式;
(2)计算a10,a15,a2n+1
(3)证明;数列{|an|}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-3$\sqrt{2}$x2+3x+1,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}中,an<an+1(n∈N*),且a1+an=66,a1•an=128,前n项的和Sn=126,n求公比q及项数n.

查看答案和解析>>

同步练习册答案