精英家教网 > 高中数学 > 题目详情
13.与向量$\overrightarrow{a}$=(-5,12)方向相反的单位向量是(  )
A.(5,-12)B.(-$\frac{5}{13}$,$\frac{12}{13}$)C.($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.($\frac{5}{13}$,-$\frac{12}{13}$)

分析 向量$\overrightarrow{a}$=(-5,12)方向相反的单位向量-$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$

解答 解:向量$\overrightarrow{a}$=(-5,12)方向相反的单位向量-$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=-$\frac{(-5,12)}{13}$=($\frac{5}{13}$,-$\frac{12}{13}$),
故选:D.

点评 本题考查与已知向量方向相反的单位向量的求法,涉及到平面向量坐标运算法则等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从A、B、C、D四首不同曲目中任选一首
(1)求甲、乙两班选择不同曲目的概率
(2)设这四个班级总共选取了X首曲目,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0,设g(x)是f(x)的导函数,讨论g(x)的单调性和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=4,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1,求$\frac{BE}{EC}$;
(2)平面BCC1B1与平面A1MC1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知球面上有A,B,C三点,如果$|AB|=|AC|=|BC|=2\sqrt{3}$,且球心到平面ABC的距离为1,则该球的体积为(  )
A.$\frac{20}{3}π$B.$\frac{{20\sqrt{5}}}{3}π$C.$\frac{{15\sqrt{5}}}{3}π$D.$\frac{{10\sqrt{5}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$≡(1,x),$\overrightarrow{b}$=(2x+3,x),x∈R.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求x的值
(Ⅱ)若$\overrightarrow{a}$$∥\overrightarrow{b}$,求|$\overrightarrow{a}$$-\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{1}^{2}$($\sqrt{1-(x-1)^{2}}$)dx=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知3a=5b=A,且$\frac{1}{a}$+$\frac{1}{b}$=2,则A的值是(  )
A.15B.$\sqrt{15}$C.±$\sqrt{15}$D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,
(1)求振幅A和周期T;
(2)求函数的解析式;
(3)求这个函数的单调递增区间.

查看答案和解析>>

同步练习册答案