精英家教网 > 高中数学 > 题目详情
19.函数f(x)=sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$),下列判断正确的是(  )
A.f(x)的最小正周期为$\frac{π}{2}$B.f(x-$\frac{π}{6}$)是奇函数
C.f(x)的一个对称中心为($\frac{π}{6}$,0)D.f(x)的一条对称轴为x=$\frac{π}{6}$

分析 利用二倍角公式化简函数的解析式,判断求解函数的周期,判断奇偶性,函数对称轴、对称中心即可.

解答 解:函数f(x)=sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$).
函数的周期为:π;f(x-$\frac{π}{6}$)=$\frac{1}{2}$sin2x,是奇函数,所以B正确;
f(x)的一个对称中心为($\frac{π}{6}$,0)不正确;
f(x)的一条对称轴为x=$\frac{π}{6}$不正确;
故选:B.

点评 本题考查三角函数的化简求值,函数的周期,奇偶性以及函数的对称性的判断与应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在a和b两数之间插入5个数,使他们与a,b组成等差数列,则该数列的公差为(  )
A.$\frac{b-a}{5}$B.$\frac{b-a}{6}$C.$\frac{a-b}{6}$D.$\frac{b-a}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列四个命题:
①d<0;②S11>0;③使Sn>0的最大n值为12;④数列{Sn}中的最大项为S11
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)在定义域(-1,1)上是减函数,且f(2a-1)<f(1-a),则实数a的取值范围是(  )
A.($\frac{2}{3},+∞$)B.($\frac{2}{3},1)$C.(0,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a是实数,f(x)=a-$\frac{1}{{2}^{x}+1}$(x∈R)
(1)如果f(x)为奇函数,试确定a的值.
(2)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
(1)求抛物线的方程;
(2)直线l交抛物线于A、B两点,O为坐标原点,且△OAB的重心为 $(\frac{4}{3},\frac{4}{3})$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${({\root{3}{x}-\frac{1}{x}})^8}$二项展开式的常数项为28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f:A→B是从A 到B的一个映射,其中A=B={(x,y)|x,y∈R},(x,y)在映射f的作用下的像是(2x-y,2y-x)
求(1)求A中元素(-1,2)在f作用下的像
(2))求B中元素(3,-3)在f 作用下的原像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sinωx,1)$,$\overrightarrow n=(cosωx,{cos^2}ωx+1)$,设函数f(x)=$\overrightarrow m•\overrightarrow n$+b.
(1)若函数f(x)的图象关于直线x=$\frac{π}{6}$对称,且ω∈[0,3]时,求函数f(x)的单调增区间;
(2)在(1)的条件下,当$x∈[{0,\frac{7π}{12}}]$时,函数f(x)有且只有一个零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案