精英家教网 > 高中数学 > 题目详情
图中表示的区域满足不等式(  )
A、2x+2y-1>0
B、2x+2y-1≥0
C、2x+2y-1≤0
D、2x+2y-1<0
考点:二元一次不等式(组)与平面区域
专题:不等式的解法及应用
分析:先判断原点所在的区域,即可得到结论.
解答: 解:当x=0,y=0时,2x+2y-1=-1<0,
即原点O在不等式2x+2y-1<0对应的平面区域内,
∴图象中对应的平面区域满足不等式2x+2y-1≥0,
故选:B.
点评:本题主要考查二元一次不等式表示平面区域,利用原点进行判断是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系上,设不等式组
x>0
y>0
y≤-n(x-3)
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均为整数的点)的个数为an(n∈N*).则a1=
 
,经推理可得到an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足条件
2x-y-1≤0
2x+y+1≥0
y≤x+1
,则z=x+3y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①若函数f(x)=
(3a-1)x+4a,x<1
logax,x≥1
在(-∞,+∞)上是减函数,则a的取值范围是(0,
1
3
)
;②若函数f(x)满足f(x+1)=f(3-x),则f(x)的图象关于直线x=2对称;③函数y=f(x+1)与函数y=f(3-x)的图象关于直线x=2对称;④若函数f(x+2013)=x2-2x-1(x∈R),则f(x)的最小值为-2.其中正确命题的序号有
 
(把所有正确命题的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

复数1+
3
i
与复数-
3
+i
在复平面上的对应点分别是A,B,O为坐标,则∠AOB等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,向量
a
b
的夹角为60°,则|
a
+
b
|=(  )
A、
5
B、
7
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-2y+1≥0
|x|-y-1≤0
,则z=2x+y的最大值为(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

任取三个整数,至少有一个数为偶数的概率为(  )
A、0.125B、0.25
C、0.5D、0.875

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,己知
m
=(cosA,
3
sinA),
n
=(2cosA,-2cosA),
m
n
=-1.
(Ⅰ)若a=2
3
,c=2,求△ABC的面积;
(Ⅱ)求
b-2c
acos(60°+C)
的值.

查看答案和解析>>

同步练习册答案