精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2|x-2|-x+5
(1)求函数f(x)的最小值m
(2)在(1)的结论下,若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.
考点:函数恒成立问题,函数最值的应用
专题:计算题,函数的性质及应用
分析:(1)利用绝对值的意义化简函数,确定单调性,即可求函数f(x)的最小值m
(2)由于|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,等号当且仅当(x-a)(x+2)≤0时成立,故欲使题意成立需|a+2|≥3,即可得出结论.
解答: 解:(1)f(x)=2|x-2|-x+5=
x+1(x≥2)
-3x+9(x<2)

显然,函数f(x)在区间(-∞,2)上单调递减,在区间(2,+∞)上单调递增,
所以函数f(x)的最小值m=f(2)=3              …(5分)
(Ⅱ)由(Ⅰ)知m=3,|x-a|+|x+2|≥3恒成立,
由于|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,
等号当且仅当(x-a)(x+2)≤0时成立,
故欲使题意成立需|a+2|≥3,解之得a≥1或a≤-5
所以实数a的取值范围为得a≥1或a≤-5.             …(10分)
点评:本题考查函数恒成立问题,考查绝对值的意义,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
(1)
sin(540°-x)
tan(900°-x)
1
tan(450°-x)tan(810°-x)
cos(360°-x)
sin(-x)

(2)
sin(π-α)cos(3π-α)tan(-π-α)tan(α-2π)
tan(4π-α)sin(5π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

某兴趣小组为了研究昼夜温差大小与患感冒人数多少之间的关系,分别到气象站和医院抄录了1至6月份每月15日的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日    期1月15日2月15日3月15日4月15日5月15日6月15日
昼夜温差x(°C)8111312106
就诊人数y(个)162529262111
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)若选取的是5月与6月的两组数据,请根据1至4月份的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性的回归方程是否理想?
(参考数值:
4
i=1
(xi-
.
x
)(yi-
.
y
)=36,公式:
b
=
n
i=1
(xi-
.
y
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足(1+2i)z=4+3i,求z及
z
.
z

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
5
5
,且A(0,1)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)作倾斜角为
π
4
的直线L,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若直线L与抛物线E交于M、N两点,若|MN|=8,求直线L方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=5,点D是BC边上一点,且∠BAD=60°,∠CAD=45°.
(Ⅰ)若BD=
31
,求AD的长;
(Ⅱ)若CD=4BD,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(m+3)x2-4mx+2m-1,x∈R.
(I)若方程f(x)=0的两根异号,且负根的绝对值比正根大,求实数m的取值范围.
(Ⅱ)解不等式f(x)<(m+2)x2-2mx.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos43°cos13°+sin43°sin13°的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若cosA=
1
3
,a=
3
,bc=
3
2
,则b+c=
 

查看答案和解析>>

同步练习册答案