11£®¹ýÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©ÉÏÒ»µãPÏòxÖá×÷´¹Ïߣ¬´¹×ãΪÓÒ½¹µãF£¬A¡¢B·Ö±ðΪÍÖÔ²CµÄ×ó¶¥µãºÍÉ϶¥µã£¬ÇÒAB¡ÎOP£¬$|{AF}|=\sqrt{6}+\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô¶¯Ö±ÏßlÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²ºã¹ý×ø±êÔ­µãO£®ÎÊÊÇ·ñ´æÔÚÒ»¸ö¶¨Ô²Ó붯ֱÏßl×ÜÏàÇУ®Èô´æÔÚ£¬Çó³ö¸Ã¶¨Ô²µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɵãPµÄ×ø±ê¼ÆËã¿ÉµÃKOPÓëKAB£¬ÓÖÓÉAB¡ÎOP£¬µÃ$\frac{b^2}{ac}=\frac{b}{a}$£¬»¯¼ò¿ÉµÃb=c£¬$a=\sqrt{2}c$£¬½ø¶øÓÉÍÖÔ²µÄ¼¸ºÎÐÔÖʿɵÃa¡¢bµÄÖµ£¬½«a¡¢bµÄÖµ´úÈë·½³Ì¼´¿ÉµÃ´ð°¸£»
£¨2£©ÏȼÙÉè´æÔÚÕâÑùµÄÔ²£¬·ÖÎö¿ÉµÃx1x2+y1y2=0£¬°´Ö±ÏßµÄбÂÊ´æÔÚÓë·ñ·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬Éè³öÖ±Ïߵķ½³Ì£¬Çó³öÔ­µãOµ½Ö±ÏßlµÄ¾àÀ룬ÓÉÖ±ÏßÓëÔ²µÄλÖùØÏµ·ÖÎö¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$P£¨{c£¬\frac{b^2}{a}}£©$£¬ËùÒÔ${k_{OP}}=\frac{b^2}{ac}$£¬${k_{AB}}=\frac{b}{a}$£®
ÓÉAB¡ÎOP£¬µÃ$\frac{b^2}{ac}=\frac{b}{a}$£¬½âµÃb=c£¬$a=\sqrt{2}c$£¬
ÓÉ$|{AF}|=a+c=\sqrt{6}+\sqrt{3}$£¬µÃ$b=c=\sqrt{3}$£¬$a=\sqrt{6}$£¬
ÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£®
£¨2£©¼ÙÉè´æÔÚÕâÑùµÄÔ²£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
ÓÉÒÑÖª£¬ÒÔMNΪֱ¾¶µÄÔ²ºã¹ýÔ­µãO£¬¼´$\overrightarrow{OM}¡Í\overrightarrow{ON}$£¬ËùÒÔx1x2+y1y2=0£®
µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬x1=x2£¬y1=-y2£¬ËùÒÔ$x_1^2-y_1^2=0$£¬
ÓÖ$\frac{x_1^2}{6}+\frac{y_1^2}{3}=1$£¬½âµÃ$x_1^2=y_1^2=2$£¬
²»·ÁÉè$M£¨{\sqrt{2}£¬\sqrt{2}}£©$£¬$N£¨{\sqrt{2}£¬-\sqrt{2}}£©$»ò$M£¨{-\sqrt{2}£¬\sqrt{2}}£©$£¬$N£¨{-\sqrt{2}£¬-\sqrt{2}}£©$£¬
¼´Ö±ÏßlµÄ·½³ÌΪ$x=\sqrt{2}$»ò$x=-\sqrt{2}$£¬
´ËʱԭµãOµ½Ö±ÏßlµÄ¾àÀëΪ$d=\sqrt{2}$£®
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
½â$\left\{\begin{array}{l}\frac{x^2}{6}+\frac{y^2}{3}=1\\ y=kx+m\end{array}\right.$ÏûÈ¥yµÃ·½³Ì£º£¨1+2k2£©x2+4kmx+2m2-6=0£¬
ÒòΪֱÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£¬
ËùÒÔ·½³ÌµÄÅбðʽ¡÷=£¨4km£©2-4£¨1+2k2£©£¨2m2-6£©£¾0£¬¼´m2£¼3£¨k2+2£©£¬
ÇÒ${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}$£¬${x_1}{x_2}=\frac{{2{m^2}-6}}{{1+2{k^2}}}$£®
ÓÉx1x2+y1y2=0£¬µÃx1x2+£¨kx1+m£©£¨kx2+m£©=$£¨{1+{k^2}}£©{x_1}{x_2}+km£¨{{x_1}+{x_2}}£©+{m^2}=0$£¬
ËùÒÔ$£¨{1+{k^2}}£©\frac{{2{m^2}-6}}{{1+2{k^2}}}$$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬
ÕûÀíµÃm2=2£¨1+k2£©£¨Âú×ã¡÷£¾0£©£®
ËùÒÔÔ­µãOµ½Ö±ÏßlµÄ¾àÀë$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\sqrt{2}$£®
×ÛÉÏËùÊö£¬Ô­µãOµ½Ö±ÏßlµÄ¾àÀëΪ¶¨Öµ$\sqrt{2}$£¬¼´´æÔÚ¶¨Ô²x2+y2=2×ÜÓëÖ±ÏßlÏàÇУ®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Éæ¼°ÍÖÔ²µÄ±ê×¼·½³Ì£¬ÐèÒªÖ±ÏßµÄбÂÊ´æÔÚÓë·ñ½øÐзÖÀàÌÖÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èç¹û¸´Êý£¨m2+i£©£¨1+m£©ÊÇʵÊý£¬ÔòʵÊým=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©¹ýµã$£¨{-1£¬\frac{3}{2}}£©$£¬ÇÒÀëÐÄÂÊΪ$\frac{1}{2}$£¬¹ýµãP£¨1£¬0£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²µÄCµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÒÑÖªOÎª×ø±êÔ­µã£¬ÇÒ$\overrightarrow{PO}=\overrightarrow{OR}$£¬Çó¡÷MNRÃæ»ýµÄ×î´óÖµÒÔ¼°´ËʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$e=\frac{{\sqrt{2}}}{2}$£¬ÇÒ¹ýµãA£¨2£¬1£©£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©¹ýµãB£¨3£¬0£©ÇÒбÂÊ´óÓÚ0µÄÖ±ÏßlÓëÍÖÔ²EÏཻÓÚµãP£¬Q£¬Ö±ÏßAP£¬AQÓëxÖáÏཻÓÚM£¬NÁ½µã£¬Çó|BM|+|BN|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÈýÀâ×¶P-ABCµÄËĸö¶¥µã¾ùÔڰ뾶Ϊ2µÄÇòÃæÉÏ£¬ÇÒPA¡¢PB¡¢PCÁ½Á½»¥Ïà´¹Ö±£¬ÔòÈýÀâ×¶P-ABCµÄ²àÃæ»ýµÄ×î´óֵΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÏÖÓÐ12ÕŲ»Í¬µÄ¿¨Æ¬£¬ÆäÖкìÉ«¡¢»ÆÉ«¡¢À¶É«¡¢ÂÌÉ«¿¨Æ¬¸÷3ÕÅ£¬´ÓÖÐÈÎÈ¡3ÕÅ£¬ÒªÇóÕâ3ÕÅ¿¨Æ¬²»ÄÜÊÇͬһÖÖÑÕÉ«£¬ÇÒºìÉ«¿¨Æ¬ÖÁ¶à1ÕÅ£¬²»Í¬È¡·¨µÄÖÖÊýΪ189£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÆ½ÃæÄÚ£¬¶¨µãA£¬B£¬C£¬DÂú×ã|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|=2£¬$\overrightarrow{DA}$•$\overrightarrow{BC}$=$\overrightarrow{DB}$•$\overrightarrow{AC}$=$\overrightarrow{DC}$•$\overrightarrow{AB}$=0£¬¶¯µãP£¬MÂú×ã|$\overrightarrow{AP}$|=1£¬$\overrightarrow{PM}$=$\overrightarrow{MC}$£¬Ôò|$\overrightarrow{BM}$|2µÄ×î´óֵΪ$\frac{49}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®sin72¡ãcos18¡ã+cos72¡ãsin18¡ãµÄֵΪ£¨¡¡¡¡£©
A£®1B£®$\frac{1}{2}$C£®-$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¸ø³öÈçÏÂÃüÌ⣬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
¢Ù½«°Ë½øÖÆÊý326£¨8£©»¯ÎªÎå½øÖÆÊýΪ1324£¨5£©£»
¢ÚÓÃÇØ¾ÅÉØËã·¨Çó¶àÏîʽf£¨x£©=7x7+4x4+3x3+2x2+x£¬µ±x=3ʱµÄÖµ£®¼Çv0=7£¬Ôòv2=63£»
¢Û¼òµ¥Ëæ»ú³éÑù¡¢ÏµÍ³³éÑù¡¢·Ö²ã³éÑùÈýÕߵĹ²Í¬ÌصãÊdzéÑù¹ý³ÌÖÐÿ¸ö¸öÌå±»³éµ½µÄ»ú»á¾ùµÈ£»
¢Üij¹¤³§Éú²úA¡¢B¡¢CÈýÖÖ²»Í¬ÐͺŵIJúÆ·£¬²úÆ·ÊýÁ¿Ö®±ÈÒÀ´ÎΪ2£º3£º4£¬ÏÖÓ÷ֲã³éÑù·½·¨³é³öÒ»¸öÈÝÁ¿ÎªnµÄÑù±¾£¬Ñù±¾ÖÐAÖÖÐͺŲúÆ·ÓÐ16¼þ£®ÄÇô´ËÑù±¾µÄÈÝÁ¿n=72£»
¢Ýijµ¥Î»ÓÐ840ÃûÖ°¹¤£¬ÏÖ²ÉÓÃϵͳ³éÑù·½·¨³éÈ¡42ÈË×öÎʾíµ÷²é£¬½«840È˰´1£¬2£¬¡­£¬840Ëæ»ú±àºÅ£¬Ôò³éÈ¡µÄ42ÈËÖУ¬±àºÅÂäÈëÇø¼ä[481£¬720]µÄÈËÊýΪ12£®
A£®¢Ù¢Û¢ÝB£®¢Û¢Ü¢ÝC£®¢Ù¢Ú¢Û¢ÜD£®¢Ù¢Ú¢Û¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸