·ÖÎö £¨1£©ÓɵãPµÄ×ø±ê¼ÆËã¿ÉµÃKOPÓëKAB£¬ÓÖÓÉAB¡ÎOP£¬µÃ$\frac{b^2}{ac}=\frac{b}{a}$£¬»¯¼ò¿ÉµÃb=c£¬$a=\sqrt{2}c$£¬½ø¶øÓÉÍÖÔ²µÄ¼¸ºÎÐÔÖʿɵÃa¡¢bµÄÖµ£¬½«a¡¢bµÄÖµ´úÈë·½³Ì¼´¿ÉµÃ´ð°¸£»
£¨2£©ÏȼÙÉè´æÔÚÕâÑùµÄÔ²£¬·ÖÎö¿ÉµÃx1x2+y1y2=0£¬°´Ö±ÏßµÄбÂÊ´æÔÚÓë·ñ·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬Éè³öÖ±Ïߵķ½³Ì£¬Çó³öÔµãOµ½Ö±ÏßlµÄ¾àÀ룬ÓÉÖ±ÏßÓëÔ²µÄλÖùØÏµ·ÖÎö¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$P£¨{c£¬\frac{b^2}{a}}£©$£¬ËùÒÔ${k_{OP}}=\frac{b^2}{ac}$£¬${k_{AB}}=\frac{b}{a}$£®
ÓÉAB¡ÎOP£¬µÃ$\frac{b^2}{ac}=\frac{b}{a}$£¬½âµÃb=c£¬$a=\sqrt{2}c$£¬
ÓÉ$|{AF}|=a+c=\sqrt{6}+\sqrt{3}$£¬µÃ$b=c=\sqrt{3}$£¬$a=\sqrt{6}$£¬
ÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£®
£¨2£©¼ÙÉè´æÔÚÕâÑùµÄÔ²£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
ÓÉÒÑÖª£¬ÒÔMNΪֱ¾¶µÄÔ²ºã¹ýÔµãO£¬¼´$\overrightarrow{OM}¡Í\overrightarrow{ON}$£¬ËùÒÔx1x2+y1y2=0£®
µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬x1=x2£¬y1=-y2£¬ËùÒÔ$x_1^2-y_1^2=0$£¬
ÓÖ$\frac{x_1^2}{6}+\frac{y_1^2}{3}=1$£¬½âµÃ$x_1^2=y_1^2=2$£¬
²»·ÁÉè$M£¨{\sqrt{2}£¬\sqrt{2}}£©$£¬$N£¨{\sqrt{2}£¬-\sqrt{2}}£©$»ò$M£¨{-\sqrt{2}£¬\sqrt{2}}£©$£¬$N£¨{-\sqrt{2}£¬-\sqrt{2}}£©$£¬
¼´Ö±ÏßlµÄ·½³ÌΪ$x=\sqrt{2}$»ò$x=-\sqrt{2}$£¬
´ËʱԵãOµ½Ö±ÏßlµÄ¾àÀëΪ$d=\sqrt{2}$£®
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
½â$\left\{\begin{array}{l}\frac{x^2}{6}+\frac{y^2}{3}=1\\ y=kx+m\end{array}\right.$ÏûÈ¥yµÃ·½³Ì£º£¨1+2k2£©x2+4kmx+2m2-6=0£¬
ÒòΪֱÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£¬
ËùÒÔ·½³ÌµÄÅбðʽ¡÷=£¨4km£©2-4£¨1+2k2£©£¨2m2-6£©£¾0£¬¼´m2£¼3£¨k2+2£©£¬
ÇÒ${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}$£¬${x_1}{x_2}=\frac{{2{m^2}-6}}{{1+2{k^2}}}$£®
ÓÉx1x2+y1y2=0£¬µÃx1x2+£¨kx1+m£©£¨kx2+m£©=$£¨{1+{k^2}}£©{x_1}{x_2}+km£¨{{x_1}+{x_2}}£©+{m^2}=0$£¬
ËùÒÔ$£¨{1+{k^2}}£©\frac{{2{m^2}-6}}{{1+2{k^2}}}$$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬
ÕûÀíµÃm2=2£¨1+k2£©£¨Âú×ã¡÷£¾0£©£®
ËùÒÔÔµãOµ½Ö±ÏßlµÄ¾àÀë$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\sqrt{2}$£®
×ÛÉÏËùÊö£¬ÔµãOµ½Ö±ÏßlµÄ¾àÀëΪ¶¨Öµ$\sqrt{2}$£¬¼´´æÔÚ¶¨Ô²x2+y2=2×ÜÓëÖ±ÏßlÏàÇУ®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Éæ¼°ÍÖÔ²µÄ±ê×¼·½³Ì£¬ÐèÒªÖ±ÏßµÄбÂÊ´æÔÚÓë·ñ½øÐзÖÀàÌÖÂÛ£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{1}{2}$ | C£® | -$\frac{\sqrt{3}}{2}$ | D£® | $\frac{\sqrt{3}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù¢Û¢Ý | B£® | ¢Û¢Ü¢Ý | C£® | ¢Ù¢Ú¢Û¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü¢Ý |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com