13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬Á½×¼ÏßÖ®¼äµÄ¾àÀëΪ8£®µãPÔÚÍÖÔ²EÉÏ£¬ÇÒλÓÚµÚÒ»ÏóÏÞ£¬¹ýµãF1×÷Ö±ÏßPF1µÄ´¹Ïßl1£¬¹ýµãF2×÷Ö±ÏßPF2µÄ´¹Ïßl2£®
£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïßl1£¬l2µÄ½»µãQÔÚÍÖÔ²EÉÏ£¬ÇóµãPµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃa=2c£¬ÓÉÍÖÔ²µÄ×¼Ïß·½³Ìx=¡À$\frac{2{a}^{2}}{c}$£¬Ôò2¡Á$\frac{2{a}^{2}}{c}$=8£¬¼´¿ÉÇóµÃaºÍcµÄÖµ£¬Ôòb2=a2-c2=3£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèPµã×ø±ê£¬·Ö±ðÇóµÃÖ±ÏßPF2µÄбÂʼ°Ö±ÏßPF1µÄбÂÊ£¬Ôò¼´¿ÉÇóµÃl2¼°l1µÄбÂʼ°·½³Ì£¬ÁªÁ¢ÇóµÃQµã×ø±ê£¬ÓÉQÔÚÍÖÔ²·½³Ì£¬ÇóµÃy02=x02-1£¬ÁªÁ¢¼´¿ÉÇóµÃPµã×ø±ê£»
·½·¨¶þ£ºÉèP£¨m£¬n£©£¬µ±m¡Ù1ʱ£¬${k}_{P{F}_{2}}$=$\frac{n}{m-1}$£¬${k}_{P{F}_{1}}$=$\frac{n}{m+1}$£¬ÇóµÃÖ±Ïßl1¼°l1µÄ·½³Ì£¬ÁªÁ¢ÇóµÃQµã×ø±ê£¬¸ù¾Ý¶Ô³ÆÐԿɵÃ$\frac{{m}^{2}-1}{n}$=¡Àn2£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃPµã×ø±ê£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{1}{2}$£¬Ôòa=2c£¬¢Ù
ÍÖÔ²µÄ×¼Ïß·½³Ìx=¡À$\frac{{a}^{2}}{c}$£¬ÓÉ2¡Á$\frac{{a}^{2}}{c}$=8£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃ£ºa=2£¬c=1£¬
Ôòb2=a2-c2=3£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©·½·¨Ò»£ºÉèP£¨x0£¬y0£©£¬ÔòÖ±ÏßPF2µÄбÂÊ${k}_{P{F}_{2}}$=$\frac{{y}_{0}}{{x}_{0}-1}$£¬
ÔòÖ±Ïßl2µÄбÂÊk2=-$\frac{{x}_{0}-1}{{y}_{0}}$£¬Ö±Ïßl2µÄ·½³Ìy=-$\frac{{x}_{0}-1}{{y}_{0}}$£¨x-1£©£¬
Ö±ÏßPF1µÄбÂÊ${k}_{P{F}_{1}}$=$\frac{{y}_{0}}{{x}_{0}+1}$£¬
ÔòÖ±Ïßl2µÄбÂÊk1=-$\frac{{x}_{0}+1}{{y}_{0}}$£¬Ö±Ïßl1µÄ·½³Ìy=-$\frac{{x}_{0}+1}{{y}_{0}}$£¨x+1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{{x}_{0}-1}{{y}_{0}}£¨x-1£©}\\{y=-\frac{{x}_{0}+1}{{y}_{0}}£¨x+1£©}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-{x}_{0}}\\{y=\frac{{x}_{0}^{2}-1}{{y}_{0}}}\end{array}\right.$£¬ÔòQ£¨-x0£¬$\frac{{x}_{0}^{2}-1}{{y}_{0}}$£©£¬
ÓÉP£¬QÔÚÍÖÔ²ÉÏ£¬P£¬QµÄºá×ø±ê»¥ÎªÏà·´Êý£¬×Ý×ø±êÓ¦ÏàµÈ£¬Ôòy0=$\frac{{x}_{0}^{2}-1}{{y}_{0}}$£¬
¡ày02=x02-1£¬
Ôò$\left\{\begin{array}{l}{\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1}\\{{y}_{0}^{2}={x}_{0}^{2}-1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{0}^{2}=\frac{16}{7}}\\{{y}_{0}^{2}=\frac{9}{7}}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}{{x}_{0}=¡À\frac{4\sqrt{7}}{7}}\\{{y}_{0}=¡À\frac{3\sqrt{7}}{7}}\end{array}\right.$£¬
ÓÖPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔPµÄ×ø±êΪ£º
P£¨$\frac{4\sqrt{7}}{7}$£¬$\frac{3\sqrt{7}}{7}$£©£®

·½·¨¶þ£ºÉèP£¨m£¬n£©£¬ÓÉPÔÚµÚÒ»ÏóÏÞ£¬Ôòm£¾0£¬n£¾0£¬
µ±m=1ʱ£¬${k}_{P{F}_{2}}$²»´æÔÚ£¬½âµÃ£ºQÓëF1ÖØºÏ£¬²»Âú×ãÌâÒ⣬
µ±m¡Ù1ʱ£¬${k}_{P{F}_{2}}$=$\frac{n}{m-1}$£¬${k}_{P{F}_{1}}$=$\frac{n}{m+1}$£¬
ÓÉl1¡ÍPF1£¬l2¡ÍPF2£¬Ôò${k}_{{l}_{1}}$=-$\frac{m+1}{n}$£¬${k}_{{l}_{2}}$=-$\frac{m-1}{n}$£¬
Ö±Ïßl1µÄ·½³Ìy=-$\frac{m+1}{n}$£¨x+1£©£¬¢ÙÖ±Ïßl2µÄ·½³Ìy=-$\frac{m-1}{n}$£¨x-1£©£¬¢Ú
ÁªÁ¢½âµÃ£ºx=-m£¬ÔòQ£¨-m£¬$\frac{{m}^{2}-1}{n}$£©£¬
ÓÉQÔÚÍÖÔ²·½³Ì£¬ÓɶԳÆÐԿɵãº$\frac{{m}^{2}-1}{n}$=¡Àn2£¬
¼´m2-n2=1£¬»òm2+n2=1£¬
ÓÉP£¨m£¬n£©£¬ÔÚÍÖÔ²·½³Ì£¬$\left\{\begin{array}{l}{{m}^{2}-1={n}^{2}}\\{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{m}^{2}=\frac{16}{7}}\\{{n}^{2}=\frac{9}{7}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{1-{m}^{2}={n}^{2}}\\{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\end{array}\right.$£¬Î޽⣬
ÓÖPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔPµÄ×ø±êΪ£º
P£¨$\frac{4\sqrt{7}}{7}$£¬$\frac{3\sqrt{7}}{7}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½£¬¿¼²éÊýÐνáºÏ˼Ï룬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐ˵·¨ÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®×ÜÌåÖеĸöÌåÊý²»¶àʱÒËÓüòµ¥Ëæ»ú³éÑù
B£®ÏµÍ³³éÑù¹ý³ÌÖУ¬ÔÚ×ÜÌå¾ù·ÖºóµÄÿһ²¿·ÖÖгéȡһ¸ö¸öÌ壬µÃµ½ËùÐèÑù±¾
C£®°Ù»õÉ̳¡µÄ×¥½±»î¶¯ÊdzéÇ©·¨
D£®Õû¸ö³éÑù¹ý³ÌÖУ¬Ã¿¸ö¸öÌå±»³éÈ¡µÄ¸ÅÂÊÏàµÈ£¨ÓÐÌÞ³ýʱÀýÍ⣩

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®É躯Êýf£¨x£©=cos£¨x+$\frac{¦Ð}{3}$£©£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©µÄÒ»¸öÖÜÆÚΪ-2¦ÐB£®y=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{8¦Ð}{3}$¶Ô³Æ
C£®f£¨x+¦Ð£©µÄÒ»¸öÁãµãΪx=$\frac{¦Ð}{6}$D£®f£¨x£©ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð£©µ¥µ÷µÝ¼õ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®º£Ë®ÑøÖ³³¡½øÐÐijˮ²úÆ·µÄС¢¾ÉÍøÏäÑøÖ³·½·¨µÄ²úÁ¿¶Ô±È£¬ÊÕ»ñʱ¸÷Ëæ»ú³éÈ¡ÁË100¸öÍøÏ䣬²âÁ¿¸÷ÏäË®²úÆ·µÄ²úÁ¿£¨µ¥Î»£ºkg£©£¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçÏ£º

£¨1£©¼ÇA±íʾʼþ¡°¾ÉÑøÖ³·¨µÄÏä²úÁ¿µÍÓÚ50kg¡±£¬¹À¼ÆAµÄ¸ÅÂÊ£»
£¨2£©ÌîдÏÂÃæÁÐÁª±í£¬²¢¸ù¾ÝÁÐÁª±íÅжÏÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪÏä²úÁ¿ÓëÑøÖ³·½·¨Óйأº
Ïä²úÁ¿£¼50kgÏä²úÁ¿¡Ý50kg
¾ÉÑøÖ³·¨
ÐÂÑøÖ³·¨
£¨3£©¸ù¾ÝÏä²úÁ¿µÄƵÂÊ·Ö²¼Ö±·½Í¼£¬¶ÔÁ½ÖÖÑøÖ³·½·¨µÄÓÅÁÓ½øÐбȽϣ®
¸½£º
P£¨K2¡ÝK£©0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®µÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪʵÊý£¬ÆäǰnÏîΪSn£¬ÒÑÖªS3=$\frac{7}{4}$£¬S6=$\frac{63}{4}$£¬Ôòa8=32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚÆ½ÐÐÁùÃæÌåABCD-A1B1C1D1ÖУ¬AA1¡ÍÆ½ÃæABCD£¬ÇÒAB=AD=2£¬AA1=$\sqrt{3}$£¬¡ÏBAD=120¡ã£®
£¨1£©ÇóÒìÃæÖ±ÏßA1BÓëAC1Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨2£©Çó¶þÃæ½ÇB-A1D-AµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÇúÏßC1£ºy=cosx£¬C2£ºy=sin£¨2x+$\frac{2¦Ð}{3}$£©£¬ÔòÏÂÃæ½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®°ÑC1Éϸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2
B£®°ÑC1Éϸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2
C£®°ÑC1Éϸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2
D£®°ÑC1Éϸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªsin¦Á-cos¦Á=$\frac{4}{3}$£¬Ôòsin2¦Á=£¨¡¡¡¡£©
A£®-$\frac{7}{9}$B£®-$\frac{2}{9}$C£®$\frac{2}{9}$D£®$\frac{7}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=2an-2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ÖУ¬b1=1£¬bn+1-bn=2
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏîanºÍbn£»
£¨2£©Éècn=an•bn£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸