·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃa=2c£¬ÓÉÍÖÔ²µÄ×¼Ïß·½³Ìx=¡À$\frac{2{a}^{2}}{c}$£¬Ôò2¡Á$\frac{2{a}^{2}}{c}$=8£¬¼´¿ÉÇóµÃaºÍcµÄÖµ£¬Ôòb2=a2-c2=3£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèPµã×ø±ê£¬·Ö±ðÇóµÃÖ±ÏßPF2µÄбÂʼ°Ö±ÏßPF1µÄбÂÊ£¬Ôò¼´¿ÉÇóµÃl2¼°l1µÄбÂʼ°·½³Ì£¬ÁªÁ¢ÇóµÃQµã×ø±ê£¬ÓÉQÔÚÍÖÔ²·½³Ì£¬ÇóµÃy02=x02-1£¬ÁªÁ¢¼´¿ÉÇóµÃPµã×ø±ê£»
·½·¨¶þ£ºÉèP£¨m£¬n£©£¬µ±m¡Ù1ʱ£¬${k}_{P{F}_{2}}$=$\frac{n}{m-1}$£¬${k}_{P{F}_{1}}$=$\frac{n}{m+1}$£¬ÇóµÃÖ±Ïßl1¼°l1µÄ·½³Ì£¬ÁªÁ¢ÇóµÃQµã×ø±ê£¬¸ù¾Ý¶Ô³ÆÐԿɵÃ$\frac{{m}^{2}-1}{n}$=¡Àn2£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃPµã×ø±ê£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{1}{2}$£¬Ôòa=2c£¬¢Ù
ÍÖÔ²µÄ×¼Ïß·½³Ìx=¡À$\frac{{a}^{2}}{c}$£¬ÓÉ2¡Á$\frac{{a}^{2}}{c}$=8£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃ£ºa=2£¬c=1£¬
Ôòb2=a2-c2=3£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©·½·¨Ò»£ºÉèP£¨x0£¬y0£©£¬ÔòÖ±ÏßPF2µÄбÂÊ${k}_{P{F}_{2}}$=$\frac{{y}_{0}}{{x}_{0}-1}$£¬
ÔòÖ±Ïßl2µÄбÂÊk2=-$\frac{{x}_{0}-1}{{y}_{0}}$£¬Ö±Ïßl2µÄ·½³Ìy=-$\frac{{x}_{0}-1}{{y}_{0}}$£¨x-1£©£¬
Ö±ÏßPF1µÄбÂÊ${k}_{P{F}_{1}}$=$\frac{{y}_{0}}{{x}_{0}+1}$£¬
ÔòÖ±Ïßl2µÄбÂÊk1=-$\frac{{x}_{0}+1}{{y}_{0}}$£¬Ö±Ïßl1µÄ·½³Ìy=-$\frac{{x}_{0}+1}{{y}_{0}}$£¨x+1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{{x}_{0}-1}{{y}_{0}}£¨x-1£©}\\{y=-\frac{{x}_{0}+1}{{y}_{0}}£¨x+1£©}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-{x}_{0}}\\{y=\frac{{x}_{0}^{2}-1}{{y}_{0}}}\end{array}\right.$£¬ÔòQ£¨-x0£¬$\frac{{x}_{0}^{2}-1}{{y}_{0}}$£©£¬
ÓÉP£¬QÔÚÍÖÔ²ÉÏ£¬P£¬QµÄºá×ø±ê»¥ÎªÏà·´Êý£¬×Ý×ø±êÓ¦ÏàµÈ£¬Ôòy0=$\frac{{x}_{0}^{2}-1}{{y}_{0}}$£¬
¡ày02=x02-1£¬
Ôò$\left\{\begin{array}{l}{\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1}\\{{y}_{0}^{2}={x}_{0}^{2}-1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{0}^{2}=\frac{16}{7}}\\{{y}_{0}^{2}=\frac{9}{7}}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}{{x}_{0}=¡À\frac{4\sqrt{7}}{7}}\\{{y}_{0}=¡À\frac{3\sqrt{7}}{7}}\end{array}\right.$£¬
ÓÖPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔPµÄ×ø±êΪ£º
P£¨$\frac{4\sqrt{7}}{7}$£¬$\frac{3\sqrt{7}}{7}$£©£®![]()
·½·¨¶þ£ºÉèP£¨m£¬n£©£¬ÓÉPÔÚµÚÒ»ÏóÏÞ£¬Ôòm£¾0£¬n£¾0£¬
µ±m=1ʱ£¬${k}_{P{F}_{2}}$²»´æÔÚ£¬½âµÃ£ºQÓëF1ÖØºÏ£¬²»Âú×ãÌâÒ⣬
µ±m¡Ù1ʱ£¬${k}_{P{F}_{2}}$=$\frac{n}{m-1}$£¬${k}_{P{F}_{1}}$=$\frac{n}{m+1}$£¬
ÓÉl1¡ÍPF1£¬l2¡ÍPF2£¬Ôò${k}_{{l}_{1}}$=-$\frac{m+1}{n}$£¬${k}_{{l}_{2}}$=-$\frac{m-1}{n}$£¬
Ö±Ïßl1µÄ·½³Ìy=-$\frac{m+1}{n}$£¨x+1£©£¬¢ÙÖ±Ïßl2µÄ·½³Ìy=-$\frac{m-1}{n}$£¨x-1£©£¬¢Ú
ÁªÁ¢½âµÃ£ºx=-m£¬ÔòQ£¨-m£¬$\frac{{m}^{2}-1}{n}$£©£¬
ÓÉQÔÚÍÖÔ²·½³Ì£¬ÓɶԳÆÐԿɵãº$\frac{{m}^{2}-1}{n}$=¡Àn2£¬
¼´m2-n2=1£¬»òm2+n2=1£¬
ÓÉP£¨m£¬n£©£¬ÔÚÍÖÔ²·½³Ì£¬$\left\{\begin{array}{l}{{m}^{2}-1={n}^{2}}\\{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{m}^{2}=\frac{16}{7}}\\{{n}^{2}=\frac{9}{7}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{1-{m}^{2}={n}^{2}}\\{\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1}\end{array}\right.$£¬Î޽⣬
ÓÖPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔPµÄ×ø±êΪ£º
P£¨$\frac{4\sqrt{7}}{7}$£¬$\frac{3\sqrt{7}}{7}$£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½£¬¿¼²éÊýÐνáºÏ˼Ï룬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ×ÜÌåÖеĸöÌåÊý²»¶àʱÒËÓüòµ¥Ëæ»ú³éÑù | |
| B£® | ϵͳ³éÑù¹ý³ÌÖУ¬ÔÚ×ÜÌå¾ù·ÖºóµÄÿһ²¿·ÖÖгéȡһ¸ö¸öÌ壬µÃµ½ËùÐèÑù±¾ | |
| C£® | °Ù»õÉ̳¡µÄ×¥½±»î¶¯ÊdzéÇ©·¨ | |
| D£® | Õû¸ö³éÑù¹ý³ÌÖУ¬Ã¿¸ö¸öÌå±»³éÈ¡µÄ¸ÅÂÊÏàµÈ£¨ÓÐÌÞ³ýʱÀýÍ⣩ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©µÄÒ»¸öÖÜÆÚΪ-2¦Ð | B£® | y=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{8¦Ð}{3}$¶Ô³Æ | ||
| C£® | f£¨x+¦Ð£©µÄÒ»¸öÁãµãΪx=$\frac{¦Ð}{6}$ | D£® | f£¨x£©ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð£©µ¥µ÷µÝ¼õ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| Ïä²úÁ¿£¼50kg | Ïä²úÁ¿¡Ý50kg | |
| ¾ÉÑøÖ³·¨ | ||
| ÐÂÑøÖ³·¨ |
| P£¨K2¡ÝK£© | 0.050 | 0.010 | 0.001 |
| K | 3.841 | 6.635 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | °ÑC1Éϸ÷µãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2 | |
| B£® | °ÑC1Éϸ÷µãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2 | |
| C£® | °ÑC1Éϸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2 | |
| D£® | °ÑC1Éϸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±ê²»±ä£¬Ôٰѵõ½µÄÇúÏßÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È£¬µÃµ½ÇúÏßC2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{7}{9}$ | B£® | -$\frac{2}{9}$ | C£® | $\frac{2}{9}$ | D£® | $\frac{7}{9}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com