精英家教网 > 高中数学 > 题目详情
9.已知x,y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$的最小值为$\frac{3}{2}$.

分析 x、y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,令$\frac{y}{x}$=t>0,可得$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$,利用基本不等式的性质即可得出.

解答 解:∵x、y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,
令$\frac{y}{x}$=t>0,∴$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$≥$2\sqrt{(t+\frac{1}{2})•\frac{1}{t+\frac{1}{2}}}$-$\frac{1}{2}$=$\frac{3}{2}$,
当且仅当t=$\frac{1}{2}$时取等号.
∴$\frac{2x}{x+2y}$+$\frac{y}{x}$的最小值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设全集U={0,1,2,3},集合A={0,1,2},集合B={2,3},则(∁UA)∪B=(  )
A.B.{1,2,3}C.{0,1,2,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$,不等式|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|是否正确?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α∈(0,$\frac{π}{2}$),β∈(一$\frac{π}{2}$,0),且coa(α-β)=$\frac{3}{5}$,sinβ=-$\frac{\sqrt{2}}{10}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,若a3=-4,a7=a5+1,则此数列的通项an=$\frac{1}{2}$n-$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.P是边长为a的正三角形ABC所在平面外一点,且PA=PB=PC=a,则四面体PABC外接球半径为$\frac{\sqrt{6}}{4}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A′B′C′D′中,M是AB上一点,N是A′C的中点,MN⊥平面A′DC,求证:MN∥AD′.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若cos(75°+α)=$\frac{5}{13}$,则cos(15°-α)+sin(α-15°)的值为(  )
A.$\frac{7}{13}$B.-$\frac{17}{13}$C.$\frac{7}{13}$或-$\frac{17}{13}$D.$±\frac{7}{13}$或$±\frac{17}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2t+m}\\{y=t}\end{array}\right.$(t是参数,m是常数).
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.

查看答案和解析>>

同步练习册答案