精英家教网 > 高中数学 > 题目详情
10.f(x)=2+tanx,在($\frac{π}{4}$,f($\frac{π}{4}$))处的切线方程$y-3=2(x-\frac{π}{4})$.

分析 求导数,确定切线的斜率,切点坐标,即可求出切线方程.

解答 解:∵f(x)=2+tanx,
∴f′(x)=$\frac{1}{co{s}^{2}x}$,
∴f′($\frac{π}{4}$)=2,
∵f($\frac{π}{4}$)=3
∴f(x)=2+tanx,在($\frac{π}{4}$,f($\frac{π}{4}$))处的切线方程是$y-3=2(x-\frac{π}{4})$.
故答案为$y-3=2(x-\frac{π}{4})$.

点评 本题考查导数的几何意义,考查切线方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)求函数f(x)=$\frac{\sqrt{4-x}}{x-1}$的定义域.
(2)若f(x-1)=x2+2x+3,求f(x)的解析式.
(3)求函数f(x)=x2-2x+3在[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,则实数m的取值范围为(  )
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司生产的某产品每件成本为40元,经市场调查整理出如下信息:
时间:(第x天)13610
日销量(m件)198194188180
①该产品90天内日销量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内销售价格(元/件)与时间(第x天)的关系如下表:
时间:(第x天)1≤x<5050≤x<90
销售价格(元/件)x+60100
(1)求m关于x的函数关系;
(2)设销售该产品每天利润为y元,求y关于x的函数表达式;并求出在90天内该产品哪天的销售利润最大?最大利润是多少?[每天利润=日销量x(销售价格-每件成本)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用辗转相除法求204,168,186三个数的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1中,$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{C{C}_{1}}$=(  )
A.$\overrightarrow{CA}$B.$\overrightarrow{AC}$C.$\overrightarrow{A{C}_{1}}$D.$\overrightarrow{A{B}_{1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$tanθ=-\frac{4}{3}$(0<θ<π),则cosθ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=sin($ωx+\frac{π}{4}$)图象向右平移$\frac{π}{4}$单位长度后,与原图图象重合,则正数ω最小值为(  )
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,四边形ABCD是边长为4菱形,O是AC与BD的交点,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF=2$\sqrt{2}$.
(1)求证:EO⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.

查看答案和解析>>

同步练习册答案