【题目】一台机器由于使用时间较长,生产的零件有一些缺损,按不同转速生产出来的零件有缺损的统计数据如下表所示.
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么机器的运转速度应控制在什么范围内?
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺损零件数y(个) | 11 | 9 | 8 | 5 |
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,满足
.
(1)求角C的大小;
(2)设函数f(x)=cos(2x+C),将f(x)的图象向右平移
个单位长度后得到函数g(x)的图象,求函数g(x)在区间
上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项和为
,
,
为整数,且对任意
都有
.
(1)求
的通项公式;
(2)设
,
求
的前
项和
;
(3)在(2)的条件下,若数列
满足
.是否存在实数
,使得数列
是单调递增数列.若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
为递增的等比数列,
,
数列
满足
.
(Ⅰ)求数列
的通项公式;(Ⅱ)求证:
是等差数列;
(Ⅲ)设数列
满足
,且数列
的前
项和
,并求使得
对任意
都成立的正整数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1、2、3、4、5.甲先从箱子中摸出一个小球,记下球上所标数字后,将该小球放回箱子中摇匀后,乙再从该箱子中摸出一个小球.
(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(数字相同为平局),求甲获胜的概率;
(2)规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且离心率
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)若椭圆
上存在点
、
关于直线
对称,求
的所有取值构成的集合
,并证明对于
,
的中点恒在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,底面是等腰直角三角形,
,侧棱
,点
分别为棱
的中点,
的重心为
,直线
垂直于平面
.
![]()
(1)求证:直线
平面
;
(2)求二面角
的余弦.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com