精英家教网 > 高中数学 > 题目详情
一顶点在坐标原点,焦点在x轴上的抛物线截直线2x-y-4=0所得的弦长为3
5
,求抛物线的方程.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设抛物线方程为y2=2px(p≠0),将直线方程y=2x-4代入,并整理,利用韦达定理,结合弦长公式,即可求抛物线的方程.
解答: 解:设抛物线方程为y2=2px(p≠0),
将直线方程y=2x-4代入,并整理得2x2-(8+p)x+8=0.
设方程的两个根为x1,x2,则根据韦达定理有x1+x2=
8+p
2
,x1x2=4.
由弦长公式,得(3
5
2=(1+22)[(x1+x22-4x1x2],
即9=(
8+p
2
2-16.
整理得p2+16p-36=0,
解得p=2,或p=-18,此时△>0.
故所求的抛物线方程为y2=4x,或y2=-36x.
点评:本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查抛物线的弦长计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-m|和 g(x)=-x2+c(m,c为常数),且对任意x∈R,都有f(x+3)=f(-x)恒成立.
(Ⅰ)求m的值;
(Ⅱ)设函数F(x)满足对任意x∈R,都有F(x)=F(-x),且当x∈[0,3]时,F(x)=f(x).若存在x1,x2∈[-1,3],使得|F(x1)-g(x2)|<1成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥V-ABC中,∠VAB=∠VAC=∠ABC=90°,VA=
3
AC,点E为VC的中点.
(Ⅰ)求证:平面VBA⊥平面VBC;
(Ⅱ)求直线BE与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|
(1)解不等式xf(x)+3>0;
(2)对于任意的x∈(-3,3),不等式f(x)<m-|x|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
16
-
y2
4
=1的两焦点为F1、F2
(1)若点M在双曲线上,且
MF1
MF2
=0,求M点到x轴的距离;
(2)若双曲线C与已知双曲线有相同焦点,且过点(3
2
,2),求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(Ⅰ)若函数f(x)最小值是f(-1)=0,且c=1,F(x)=
f(x),x>0
-f(x),x<0
,求F(3)+F(-4)的值
(Ⅱ)若a=1,c=0,且|f(x)|≤1在区间(0,2]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市连续一周对本地区楼盘商品房每日成交数据进行统计,得到如图所示的茎叶图,则中位数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知f(x)=x2+alnx的图象上任意不同两点连线的斜率大于2,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是两条直线,α,β是两个平面,P是一个点,若a∥β,b∥β,a?α,b?α,且
 
(填上一个条件即可),则有α∥β.

查看答案和解析>>

同步练习册答案