精英家教网 > 高中数学 > 题目详情
16.设集合S={x|x>1},T={x||x-1|≤2},则(∁RS)∪T(  )
A.(-∞,3]B.[-1,1]C.[-1,3]D.[-1,+∞)

分析 求出S的补集,解出集合T,取并集即可.

解答 解:集合S={x|x>1},${∁}_{R}^{S}$={x|x≤1},
T={x||x-1|≤2}={x|-1≤x≤3},
则(∁RS)∪T=(-∞,3],
故选:A.

点评 本题考查了集合的运算,熟练掌握运算性质是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知⊙O:x2+y2=4和⊙C:x2+y2-12x+27=0.
(1)判断⊙O和⊙C的位置关系;
(2)过⊙C的圆心C作⊙O的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=x4-x3的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.($\frac{1}{4}$)-0.5+8${\;}^{\frac{2}{3}}$=6,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设X是离散型随机变量,其分布列为其中a≠0,b≠0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为8
 X 0 1 2
 P a b $\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,过椭圆上的点P作y轴的垂线,垂足为Q,若四边形F1F2PQ为菱形,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.[$\frac{1}{2}$,1)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点B,F分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点与左焦点,过F作x轴的垂线与椭圆交于第二象限的一点P,H($\frac{{a}^{2}}{c}$,0)(c为半焦距),若OP∥BH(O为坐标原点),则椭圆的离心率为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\sqrt{\frac{\sqrt{5}-1}{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{{\;}^{3}\sqrt{4}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:
①双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{35}$+y2=1有相同的焦点;
②过点P(2,1)的抛物线的标准方程是y2=$\frac{1}{2}$x;
③已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若它的离心率为$\sqrt{5}$,则双曲线C的一条渐近线方程为y=2x;
④椭圆$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m}$=1的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.
其中真命题的序号为①③.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案