精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|x2-2x-3<0},Z为整数集,则集合A∩Z中所有元素的和为(  )
A.1B.2C.3D.4

分析 根据集合的基本运算进行求解即可.

解答 解:A={x|x2-2x-3<0}={x|-1<x<3},
则A∩Z={0,1,2},
则A∩Z中所有元素的和为0+1+2=3,
故选:C

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xoy中,点P到两点F(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)的距离之和等于4,设P点的轨迹为曲线C,过点M(1,0)的直线l与曲线C交于A、B两点.
(1)求曲线C的方程;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分布列.
(1)每次取出的产品不再放回去;
(2)每次取出的产品仍放回去;
(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,PD⊥平面ABCD,AD⊥CD,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(Ⅰ)求PB与平面PDC所成角的大小;
(Ⅱ)求二面角D-PB-C的正切值;
(Ⅲ)若AD=$\frac{1}{2}$BC,求证:平面PAB⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在离心率为e的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,右焦点F(c,0),A($\frac{{a}^{2}}{c}$,0),过F的直线交椭圆于M、N两点,过A与直线MN平行的直线交椭圆于B、C两点,求证:|$\overrightarrow{FM}$|•|$\overrightarrow{FN}$|=e2|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D.连结CF交AB于点E,OA=3,DB=3,则DE=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在△ABC中,AB=2,∠ABC=θ,AD是边BC上的高,当θ∈[$\frac{π}{6}$,$\frac{π}{3}$]时,$\overrightarrow{AD}$•$\overrightarrow{AC}$的最大值与最小值之差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且a1=1,点(an+1,Sn)(n∈N*)恒在直线x-y-1=0上,数列{bn}是等差数列,且b3=2,b6=8.
(1)求数列{an}的通项公式;
(2)若对?n∈N*,(Sn+1)•k≥bn恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2-cosx,则$f(\frac{3}{5}),f(0),f(-\frac{1}{2})$的大小关系是(  )
A.$f(0)<f(\frac{3}{5})<f(-\frac{1}{2})$B.$f(0)<f(-\frac{1}{2})<f(\frac{3}{5})$C.$f(\frac{3}{5})<f(-\frac{1}{2})<f(0)$D.$f(-\frac{1}{2})<f(0)<f(\frac{3}{5})$

查看答案和解析>>

同步练习册答案