精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=sin(ωx+θ)的图象(部分)如图所示,则ω和θ的取值是(  )
A.$ω=1,θ=\frac{π}{3}$B.$ω=1,θ=-\frac{π}{3}$C.$ω=\frac{1}{2},θ=\frac{π}{6}$D.$ω=\frac{1}{2},θ=-\frac{π}{6}$

分析 由函数图象可得:T=$\frac{2π}{ω}$=4($\frac{2π}{3}$+$\frac{π}{3}$),解得ω的值,由于点(-$\frac{π}{3}$,0)在函数图象上,可得:sin[$\frac{1}{2}×(-\frac{π}{3})+θ$]=0,解得θ的值,从而得解.

解答 解:由函数图象可得:T=$\frac{2π}{ω}$=4($\frac{2π}{3}$+$\frac{π}{3}$),解得$ω=\frac{1}{2}$,
由于点(-$\frac{π}{3}$,0)在函数图象上,可得:sin[$\frac{1}{2}×(-\frac{π}{3})+θ$]=0,解得:θ=kπ+$\frac{π}{6}$,k∈Z
当k=0时,可得$θ=\frac{π}{6}$,
故选:C.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知a2-a=2(b+c),a+2b=2c-3,且sinC:sinA=4:$\sqrt{13}$,求a、b、c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,有420种染色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(-|x|)的图象如左图所示,则函数y=f(x)的图象不可能是(  )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若x,y>0,且x+y>2,求证:$\frac{1+x}{y},\frac{1+y}{x}$至少有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线$y=\frac{x}{x-2}$在点(1,-1)处的切线方程是(  )
A.y=2x+1B.y=2x-1C.y=-2x+1D.y=-2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.y=|x-1|B.y=-x2C.$y=\sqrt{x+1}$D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于函数f(x)=2(sinx-cos x)cos x的四个结论:
①最大值为$\sqrt{2}$;
②把函数f(x)=$\sqrt{2}$sin2x-1的图象向右平移$\frac{π}{4}$个单位后可得到函数f(x)=2(sinx-cosx)cos x的图象;
③单调递增区间为[kπ+$\frac{7π}{8}$,kπ+$\frac{11π}{8}$](k∈Z);
④图象的对称中心为($\frac{k}{2}$π+$\frac{π}{8}$,-1)(k∈Z).
其中正确的结论有③④.(将你认为正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),且λμ=$\frac{1}{8}$,则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案