精英家教网 > 高中数学 > 题目详情
8.曲线$y=\frac{x}{x-2}$在点(1,-1)处的切线方程是(  )
A.y=2x+1B.y=2x-1C.y=-2x+1D.y=-2x-2

分析 求出导数,求得切线的斜率,再由点斜式方程,即可得到切线方程.

解答 解:$y=\frac{x}{x-2}$的导数为y′=-$\frac{2}{(x-2)^{2}}$,
即有曲线在x=1处的切线的斜率为-2,
曲线在x=1处的切线的方程为y+1=-2(x-1),
即为y=-2x+1.
故选:C.

点评 本题考查导数的运用:求切线的斜率,主要考查导数的几何意义,正确求得导数和运用直线的点斜式方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{2}{x^2}$-ax+(a-1)lnx,a≥2.
(1)讨论函数f(x)的单调性;
(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=lnx+$\frac{1}{x}$+ax(a∈R)
(1)a=0时,求f(x)最小值;
(2)若f(x)在[2,+∞)是单调减函数,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列推理正确的是(  )
A.把a(b+c)与 loga(x+y)类比,则有:loga(x+y)=logax+logay
B.把a(b+c)与 sin(x+y)类比,则有:sin(x+y)=sinx+siny
C.把(ab)n与 (a+b)n类比,则有:(x+y)n=xn+yn
D.把(a+b)+c与 (xy)z类比,则有:(xy)z=x(yz)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=sin(ωx+θ)的图象(部分)如图所示,则ω和θ的取值是(  )
A.$ω=1,θ=\frac{π}{3}$B.$ω=1,θ=-\frac{π}{3}$C.$ω=\frac{1}{2},θ=\frac{π}{6}$D.$ω=\frac{1}{2},θ=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x的单调递增区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列命题:①函数$y=sin(\frac{3}{2}π+x)$是偶函数②x=$\frac{π}{8}$是函数$y=sin(2x+\frac{5}{4}π)$的一条对称轴方程③函数$y=tan(2x+\frac{π}{6})$的图象关于点$(\frac{π}{12},0)$对称.其中正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果直角三角形周长为2,则它的最大面积为$3-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在△ABC的内角∠A、∠B、∠C的对边分别为a、b、c,若$\frac{a}{sinA}$=$\frac{b}{sin2B}$.
(1)求证:∠A、∠B、∠C依次成等差数列;
(2)当b=4时,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案