分析 (1)由已知,利用平面向量的数量积运算法则可得2bcosC=2a-c,结合余弦定理可得a2-ac=b2-c2,由余弦定理可得B=$\frac{π}{3}$.又b2=ac,利用三角函数恒等变换的应用可得sin(2A-$\frac{π}{6}$)=1,结合范围A∈(0,$\frac{2π}{3}$),可求2A-$\frac{π}{6}$的范围,解得A=C=B=$\frac{π}{3}$,即可得解.
(2)由(1)可得B=$\frac{π}{3}$,利用三角函数恒等变换的应用化简可得y=$\sqrt{2}$sin(2A-$\frac{π}{4}$),(cosA≠0),由范围A∈(0,$\frac{2π}{3}$),可求2A-$\frac{π}{4}$的范围,利用正弦函数的图象和性质可得sin(2A-$\frac{π}{4}$)∈(-$\frac{\sqrt{2}}{2}$,1),即可解得函数的值域.
解答 解:(1)∵向量$\overrightarrow{m}$=(2b,1),$\overrightarrow{n}$=(2a-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
∴2bcosC=2a-c,
由余弦定理可得:cosC=$\frac{2a-c}{2b}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
整理可得:a2-ac=b2-c2,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{b}^{2}}{2{b}^{2}}$=$\frac{1}{2}$,可得B=$\frac{π}{3}$.
又∵b2=ac,
∴可得:sin2B=$\frac{3}{4}$=sinAsinC=sinAsin($\frac{2π}{3}$-A)=sinA($\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=$\frac{\sqrt{3}}{4}$sin2A-$\frac{1}{4}$cos2A+$\frac{1}{4}$,
∴$\frac{1}{2}$=$\frac{1}{2}$sin(2A-$\frac{π}{6}$),可得:sin(2A-$\frac{π}{6}$)=1,
∵A∈(0,$\frac{2π}{3}$),2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{7π}{6}$),解得:2A-$\frac{π}{6}$=$\frac{π}{2}$,可得:A=$\frac{π}{3}$,C=π-A-B=$\frac{π}{3}$,
∴△ABC为等边三角形.
(2)∵由(1)可得:B=$\frac{π}{3}$.
∴y=1-$\frac{2cos2A}{1+tanA}$=1-$\frac{2(cosA+sinA)(cosA-sinA)}{\frac{cosA+sinA}{cosA}}$=1-2(cosA-sinA)cosA=1-2cos2A+2sinAcosA=$\sqrt{2}$sin(2A-$\frac{π}{4}$),(cosA≠0),
∵A∈(0,$\frac{2π}{3}$),2A-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{13π}{12}$),
∴sin(2A-$\frac{π}{4}$)∈(-$\frac{\sqrt{2}}{2}$,1),
∴y=1-$\frac{2cos2A}{1+tanA}$=$\sqrt{2}$sin(2A-$\frac{π}{4}$)∈(-1,$\sqrt{2}$).
点评 本题主要考查了三角函数恒等变换的应用,平面向量的数量积运算,正弦函数的图象和性质,余弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 56 | C. | 53 | D. | 51 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com