【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)将曲线
上各点的纵坐标伸长为原来的
倍(横坐标不变)得到曲线
,求
的参数方程;
(2)若
,
分别是直线
与曲线
上的动点,求
的最小值.
科目:高中数学 来源: 题型:
【题目】
三个班共有
名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):
|
|
|
|
|
|
(1)试估计
班的学生人数;
(2)从这120名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率;
(3)从A班抽出的6名学生中随机选取2人,从B班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且△PF1F2的面积为2.
(1)求椭圆
的标准方程;
(2)设斜率为1的直线
与以原点为圆心,半径为
的圆交于A,B两点,与椭圆C交于C,D两点,且
(
),当
取得最小值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知棱
,
,
两两垂直,长度分别为1,2,2.若
(
),且向量
与
夹角的余弦值为
.
![]()
(1)求
的值;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列
的公差
,数列
的前
项和为
,满足
,且
,
.若实数
,则称
具有性质
.
(1)请判断
、
是否具有性质
,并说明理由;
(2)设
为数列
的前
项和,
,且![]()
恒成立.求证:对任意的![]()
,实数
都不具有性质
;
(3)设
是数列
的前
项和,若对任意的
,
都具有性质
,求所有满足条件的
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,上顶点为A,过
的直线
与y轴交于点M,满足
(O为坐标原点),且直线l与直线
之间的距离为
.
(1)求椭圆C的方程;
(2)在直线
上是否存在点P,满足
?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过椭圆
的四个顶点与坐标轴垂直的四条直线围成的矩形
(
是第一象限内的点)的面积为
,且过椭圆
的右焦点
的倾斜角为
的直线过点
.
(1)求椭圆
的标准方程
(2)若射线
与椭圆
的交点分别为
.当它们的斜率之积为
时,试问
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com