精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow a$=(3,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,则x的值-6.

分析 利用向量共线,列出方程求解即可.

解答 解:向量$\overrightarrow a$=(3,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,
可得-2x=12,
解得x=-6.
故答案为:-6

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.△ABC的AB边中点为D,AC=1,BC=2,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知某校5个学生的数学和物理成绩如表
学生的编号i12345
数学xi8075706560
物理yi7066686462
(Ⅰ)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B为(  )
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}前n项和满足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),a1=1,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2-2x-8=0,直线l:x+ay-3a=0.
(1)当直线l与圆C相切时,求实数a的值;
(2)当直线l与圆C相交于A、B两点,且AB=4$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.边长为4$\sqrt{3}$的等边△ABC中,D为边AB的中点,若P为线段CD的中点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的值为(  )
A.18B.-18C.2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F分别是AB,PD的中点.
(1)求证:AF∥平面PEC;
(2)求PC与平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC⊥AB且AA1=AC=AB,则直线AC1与直线A1B所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案