精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=4sinxcos(x-$\frac{π}{6}$)-1
(1)求函数f(x)的最小正周期及其图象的对称中心坐标
(2)求函数f(x)的单调增区间及f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性、图象的对称性,求得函数f(x)的最小正周期及其图象的对称中心坐标.
(2)利用正弦函数的单调性、定义域和值域,求得函数f(x)的单调增区间及f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

解答 解:(1)函数f(x)=4sinxcos(x-$\frac{π}{6}$)-1=4sinx•($\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx)-1=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),
故函数f(x)的最小正周期为$\frac{2π}{2}$=π.
令2x-$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,可得函数f(x)的图象的对称中心坐标为($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z.
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,可得函数f(x)的增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
在[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],故当2x-$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)取得最小值为-1;
当2x-$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值为2.

点评 本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,正弦函数的单调性、定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某市一家报刊摊点,从报社进一种报纸的价格是每份0.20元,零售价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退给报社,在一个月(以30天计算)中,有20天每天可以售出400份报纸,其余10天每天只能售出250份,但每天从报社买进的份数必须相同,若摊主每天从报杜买进x(250≤x≤400)份,写出这个摊主这个月所获利润y(元)关于x的函数表达式;这个摊主每天从报社进多少份该报纸,才能使每月所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在某超市收银台排队付款的人数及其频率如表:
 排队人数 0 1 2 3 4人 以上
 频率0.1  0.15 0.150.25 0.15 
视频率为概率,则至少有2人排队付款的概率为0.75.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=$\frac{1}{2}$,$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,anan+1<0(n≥1);数列{bn}满足:bn=a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$(n≥1).
(1)求数列{an},{bn}的通项公式;
(2)求数列{4(n+1)bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$(x∈R).
(1)确定a的值,使f(x)为奇函数;
(2)当f(x)为奇函数时,对给定的正数k,求使f-1(x)>log2$\frac{1+x}{k}$成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+2|+|x-1|
(Ⅰ)求不等式f(x)<5的解集
(Ⅱ)若对于任意的实数x恒有f(x)≥|a-1|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量ξ服从正态分布B(1,22),若P(ξ≤2)=0.8,则P(0≤ξ≤2)=(  )
A.1B.0.8C.0.6D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某校共有600名同学参加一次考试,学生的成绩服从正态分布X~N(110,25),据此估计,分数在区间(100,120]的人数大约为(  )
附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826
                                         P(μ-2σ<X≤μ+2σ)=0.9544
                                         P(μ-3σ<X≤μ+3σ)=0.9974.
A.412B.554C.598D.573

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.命题“?x∈[1,+∞),f(x)=x2+x+m≥0”是假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案