精英家教网 > 高中数学 > 题目详情
已知x,y满足
y≥x
x+y≤2
x≥a
,且目标函数z=2x+y的最大值为M,最小值为m,若M=4m,则实数a的值为(  )
A、1
B、
1
3
C、
1
4
D、
1
8
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值和最小值即可.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分),
y=x
x+y=2
.解得
x=1
y=1
,即A(1,1),
则a<1,
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
将A的坐标代入目标函数z=2x+y,
得z=2×1+1=3.即z=2x+y的最大值为M=3.
当直线y=-2x+z经过点D时,直线y=-2x+z的截距最小,
此时z最小.
x=a
y=x
,即D(a,a),
将D的坐标代入目标函数z=2x+y,
得z=2a+a=3a.即z=2x+y的最小值为m=3a,
∵M=4m,
∴12a=3,
解得a=
1
4

故选:C
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长度为时间T的时间段内,有两个长短不等的信号随机进入收音机.长信号持续时间长度为t1(≤T),短息号持续时间长度为t2(≤T),则这两个信号互不干扰的概率是
 
(用t1、t2、T表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体的三视图如右上图所示,则该四面体的四个面中最大的面的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的底面半径为1,母线长为3,则圆锥的表面积为(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和Sn=n2-10n,(n∈N*),求数列{an}的通项公式及Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的母线长为2,侧面展开图是一个半圆,则此圆锥的表面积为(  )
A、6πB、5πC、3πD、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱的侧面展开图是正方形,则它的侧面积与下底面积的比值是(  )
A、3πB、4C、3D、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-2ay+a2-24=0(a∈R)的圆心在直线2x-y=0上,求圆C与直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次不等式ax2-2ax+2a-3<0,求解下列问题:
(1)当a=2时,解此不等式;
(2)若原不等式的解集为∅,求实数a的取值范围;
(3)若原不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案