精英家教网 > 高中数学 > 题目详情
5.若x,y满足条件$\left\{\begin{array}{l}{3x-5y+6≥0}\\{2x+3y-15≤0}\\{y≥0}\end{array}\right.$当且仅当x=y=3时,z=ax+y取最大值,则实数a的取值范围是(-$\frac{3}{5}$,$\frac{2}{3}$).

分析 作出可行域,根据最优解的位置判断目标函数的斜率范围,列出不等式解出.

解答 解:作出约束条件表示的平面区域如图:

由z=ax+y得y=-ax+z,
∵z=ax+y仅在(3,3)处取得最大值,
∴-$\frac{2}{3}$<-a<$\frac{3}{5}$,
解得-$\frac{3}{5}$<a<$\frac{2}{3}$.
故答案为:(-$\frac{3}{5}$,$\frac{2}{3}$).

点评 本题考查了简单的线性规划,根据可行域及最优解的位置判断目标函数的斜率范围是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求函数y=$\sqrt{36{-x}^{2}}$+lgcosx的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若sinα•cosα=$\frac{3}{10}$,且π<α<$\frac{5}{4}$π,则tanα的值为(  )
A.3B.$\frac{1}{3}$C.$\frac{1}{3}$或3D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.己知数列{an}是等差数列,数列{bn}是等比数列,对一切n∈N*,都有$\frac{{a}_{n+1}}{{a}_{n}}$=bn,则数列{bn}的通项公式为bn=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,a7=1,且a4,a5+1,a6成等差数列,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).

(Ⅰ)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论不要求证明)
(Ⅱ)求此人到达当日空气质量优良的概率;
(Ⅲ)设X是此人出差期间(两天)空气质量中度或重度重度污染的天数,求X的分布列与数学期望.
 空气质量指数污染程度 
 小于100 优良
 大于100且小于150 轻度
 大于150且小于200 中度
 大于200且小于300 重度
 大于300且小于500 严重
 大于500 爆表

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.小波玩已知闯关游戏,有5次挑战机会,若连续二次挑战胜利停止游戏,闯关成功;否自,闯关失败,若小波每次挑战胜利的概率均为0.8,且各次挑战相互独立,那么小波恰好挑战4次成功的概率为0.128.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列极限:
(1)$\underset{lim}{x→1}$$\frac{{x}^{2}-1}{x-1}$;
(2)$\underset{lim}{x→-2}$$\frac{x+2}{{x}^{2}+x-2}$;
(3)$\underset{lim}{x→-1}$$\frac{{x}^{2}+x}{{x}^{2}-2x-3}$;
(4)$\underset{lim}{x→2}$$\frac{\sqrt{x+2}-1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$z=\frac{1}{1+i}+i$(其中i为虚数单位),则$\overrightarrow{z}$的模等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

同步练习册答案