精英家教网 > 高中数学 > 题目详情
计算:log23•log27125=
 
考点:对数的运算性质
专题:计算题
分析:由对数的换底公式换底,约分后得答案.
解答: 解:log23•log27125=
lg3
lg2
lg125
lg27
=
lg3
lg2
3lg5
3lg3
=
lg5
lg2
=log25.
故答案为:log25.
点评:本题考查了对数的换底公式,考查了对数的运算性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲有资金a万元,甲想把a万元全部用于两个项目的投资.已知投资项目A的利润函数为f(x)=2
x
(x为投入资金),投资项目B的利润函数为g(x)=
x
2
+4 
(1)设a=10,要使总利润不少于11万,则投入到项目B的资金取值范围是多少?
(2)求总利润的最大值M(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB+AC=6,BC=4,M为BC的中点,若AB=x,AM=y,试建立y=f(x)的解析式,并求出它的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[-3,3],则函数g(x)=
f(3x)
x+1
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2+ax+b<0的解集为(-2,3),则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
mx2-2mx+m+2
的定义域为R,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a、b、c满足(b+a2-3lna)2+(c-d+4)2=0,则(a-c)2+(b-d)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2xx<2
log
1
3
x,
x≥2
,则f(f(log23))等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:4 1-log43

查看答案和解析>>

同步练习册答案