12£®ÒÑÖªµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨2£¬0£©¡¢£¨-2£¬0£©£¬Ö±ÏßAT¡¢BT½»ÓëµãT£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ³£Êý-¦Ë£¨¦Ë£¾0£¬¦Ë¡Ù1£©£¬µãTµÄ¹ì¼£ÒÔ¼°A£¬BÁ½µã¹¹³ÉÇúÏßC
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÇóÆä½¹µã×ø±ê£»
£¨¢ò£©Èô0£¼¦Ë£¼1£¬ÇÒÇúÏßCÉϵĵ㵽Æä½¹µãµÄ×î½ü¾àÀëΪ1£¬ÉèÖ±Ïßl£ºy=£¨x-1£©½»ÇúÏßCÓÚE£¬FÁ½µã£¬½»xÖáÓÚµãQ£¬Ö±ÏßAE¡¢AF·Ö±ð½»Ö±Ïßx=3ÓÚµãN¡¢M£®¼ÇÏß¶ÎMNµÄÖеãΪP£¬Ö±ÏßPQµÄбÂÊΪk¡ä£®ÇóÖ¤£ºk•k¡äΪ¶¨Öµ£®

·ÖÎö £¨1£©ÉèT£¨x£¬y£©£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½£¬È¡µÃбÂÊÖ®»ý£¬»¯¼òÕûÀíµÃ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4¦Ë}=1$£¨¦Ë£¾0£¬¦Ë¡Ù1£©¸ù¾Ý¦ËµÄȡֵ·¶Î§£¬ÇóµÃÍÖÔ²·½³Ì¼°½¹µã×ø±ê£»
£¨2£©ÍÖÔ²³¤Öá¶Ëµãµ½Í¬²à½¹µãµÄ¾àÀëÊÇÍÖÔ²Éϵĵ㵽½¹µãµÄ×î½ü¾àÀ룬ÇóµÃ¦ËµÄÖµ£¬½ø¶øÇó³öÇúÏßCµÄ·½³ÌΪ£¬Ö±Ïßy=k£¨x-1£©½»xÖáÓÚQ£¨1£¬0£©£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷k•k¡äΪ¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©ÉèT£¨x£¬y£©£¬Ôò$\frac{y}{x+2}$•$\frac{y}{x-2}$=-¦Ë£¬»¯¼òµÃ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4{¦Ë}^{2}}=1$£¨x¡Ù¡À2£©£®
ÓÖA£¬BµÄ×ø±ê£¨2£¬0£©¡¢£¨-2£¬0£©£¬Ò²·ûºÏÉÏʽ£®
¹ÊÇúÏßC£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4¦Ë}=1$£¨¦Ë£¾0£¬¦Ë¡Ù1£©£®
µ±0£¼¦Ë£¼1ʱ£¬ÇúÏßCÊǽ¹µãÔÚxÖáÉϵÄÍÖÔ²£¬½¹µãΪ£¨-$\sqrt{1-¦Ë}$£¬0£©£¬£¨$\sqrt{1-¦Ë}$£¬0£©£»
µ±¦Ë£¾1ʱ£¬ÇúÏßCÊǽ¹µãÔÚyÖáÉϵÄÍÖÔ²£¬½¹µãΪ£¨0£¬-2$\sqrt{¦Ë-1}$£©£¬£¨0£¬2$\sqrt{¦Ë-1}$£©£®

£¨¢ò£©Ö¤Ã÷£ºÓÉÓÚ0£¼¦Ë£¼1£¬ÇúÏßCÊǽ¹µãÔÚxÖáÉϵÄÍÖÔ²£¬Æä½¹µãΪ£¨-$\sqrt{1-¦Ë}$£¬0£©£¬£¨$\sqrt{1-¦Ë}$£¬0£©£¬
ÍÖÔ²µÄ³¤Öá¶Ëµãµ½Í¬²à½¹µãµÄ¾àÀëÊÇÍÖÔ²Éϵĵ㵽½¹µãµÄ×î½ü¾àÀ룮
¹Ê2-2$\sqrt{1-¦Ë}$=1£¬½âµÃ£º¦Ë=$\frac{3}{4}$£¬
ÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
Ö±Ïßy=k£¨x-1£©½»xÖáÓÚQ£¨1£¬0£©£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨4k2+3£©x2-8k2x+4k2-12=0£¬
¡àx1+x2=$\frac{8{k}^{2}}{4{k}^{2}+3}$£¬¢Ùx1x2=$\frac{4{k}^{2}-12}{4{k}^{2}+3}$£¬¢Ú
Ö±ÏßAE·½³ÌΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½»Ö±Ïßx=3ÓÚµãN£¨3£¬$\frac{{y}_{1}}{{x}_{1}-2}$£©£¬
Ö±ÏßAF·½³ÌΪ£ºy=$\frac{{y}_{2}}{{x}_{2}-2}$£¨x-2£©£¬½»Ö±Ïßx=3Óڵ㣨3£¬$\frac{{y}_{2}}{{x}_{2}-2}$£©£¬
¡àÏß¶ÎMNµÄÖеãΪP£¨3£¬$\frac{1}{2}$£¨$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$£©£©£®
¡àÖ±ÏßPQµÄбÂÊΪ£º
k¡ä=$\frac{\frac{1}{2}£¨\frac{{y}_{1}}{{x}_{1}-2}+\frac{{y}_{2}}{{x}_{2}-2}£©}{3-1}$=$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-2£¨{y}_{1}+{y}_{2}£©}{4[{x}_{1}{x}_{2}-2£¨{x}_{1}+{x}_{2}£©+4]}$=$\frac{2k{x}_{1}{x}_{2}-3k£¨{x}_{1}+{x}_{2}£©+4k}{4[{x}_{1}{x}_{2}-2£¨{x}_{1}+{x}_{2}£©+4]}$¢Û
½«¢Ù¢Ú´úÈë¢Ûʽ»¯¼òµÃk¡ä=-$\frac{3}{4k}$£¬
¡àk•k¡ä=-$\frac{3}{4}$£¬
¡àk•k¡äΪ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÇúÏß·½³Ì¼°½¹µã×ø±êµÄÇ󷨣¬¿¼²éÁ½Ö±ÏßµÄбÂÊÖ®»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Î¤´ï¶¨Àí¡¢Ö±Ïß·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª$A=\left\{{x|{{log}_{\frac{1}{2}}}x¡Ý2}\right\}$£¬$B=\left\{{x|{3^{-{x^2}+x+6}}¡Ý1}\right\}$£¬ÇóA¡ÉB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª$f£¨x£©=cos£¨{¦Øx+\frac{¦Ð}{3}}£©$£¬ÇÒ¦ØÊǺ¯Êýy=ex-e2xµÄ¼«Öµµã£¬Ôòf£¨x£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇ£¨¡¡¡¡£©
A£®$x=-\frac{¦Ð}{3}$B£®$x=\frac{¦Ð}{3}$C£®$x=\frac{¦Ð}{6}$D£®$x=\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èôa£¬b¡ÊRÇÒab¡Ù0£¬Ôò$\frac{1}{a^2}£¾\frac{1}{b^2}$³ÉÁ¢µÄÒ»¸ö³ä·Ö·Ç±ØÒªÌõ¼þÊÇ£¨¡¡¡¡£©
A£®a£¾b£¾0B£®b£¾aC£®a£¼b£¼0D£®ab£¨a-b£©£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®½«º¯Êý$y=\frac{x-3}{x-2}$µÄͼÏóÏò×óÆ½ÒÆ1¸öµ¥Î»£¬ÔÙÏòÏÂÆ½ÒÆ1¸öµ¥Î»µÃµ½º¯Êýf£¨x£©£¬Ôòº¯Êýf£¨x£©µÄͼÏóÓ뺯Êýy=2sin¦Ðx£¨-2¡Üx¡Ü4£©µÄͼÏóµÄËùÓн»µãµÄºá×ø±êÖ®ºÍµÈÓÚ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª$tan¦Á=-\frac{3}{4}$£¬Ôòsin¦Á£¨sin¦Á-cos¦Á£©=£¨¡¡¡¡£©
A£®$\frac{21}{25}$B£®$\frac{25}{21}$C£®$\frac{4}{5}$D£®$\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÃÀÍÅÍâÂôºÍ°Ù¶ÈÍâÂôÁ½¼Ò¹«Ë¾Æä¡°ÆïÊÖ¡±µÄÈÕ¹¤×Ê·½°¸ÈçÏ£ºÃÀÍÅÍâÂô¹æ¶¨µ×н70Ôª£¬Ã¿µ¥³é³É1Ôª£»°Ù¶ÈÍâÂô¹æ¶¨µ×н100Ôª£¬Ã¿ÈÕǰ45µ¥ÎÞ³é³É£¬³¬³ö45µ¥µÄ²¿·Öÿµ¥³é³É6Ôª£¬¼ÙÉèͬһ¹«Ë¾µÄ¡°ÆïÊÖ¡±Ò»ÈÕËͲ͵¥ÊýÏàͬ£¬ÏÖ´ÓÁ½¼Ò¹«Ë¾¸öËæ»ú³éȡһÃû¡°ÆïÊÖ¡±²¢¼Ç¼Æä100ÌìµÄËͲ͵¥Êý£¬µÃµ½ÈçÏÂÌõÐÎͼ£º

£¨¢ñ£©Çó°Ù¶ÈÍâÂô¹«Ë¾µÄ¡°ÆïÊÖ¡±Ò»ÈÕ¹¤×Êy£¨µ¥Î»£ºÔª£©ÓëËͲ͵¥ÊýnµÄº¯Êý¹ØÏµ£»
£¨¢ò£©Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬»Ø´ðÏÂÁÐÎÊÌ⣺
¢Ù¼Ç°Ù¶ÈÍâÂôµÄ¡°ÆïÊÖ¡±ÈÕ¹¤×ÊΪX£¨µ¥Î»£ºÔª£©£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
¢ÚСÃ÷Äâµ½ÕâÁ½¼Ò¹«Ë¾ÖеÄÒ»¼ÒӦƸ¡°ÆïÊÖ¡±µÄ¹¤×÷£¬Èç¹û½ö´ÓÈÕÊÕÈëµÄ½Ç¶È¿¼ÂÇ£¬ÇëÄãÀûÓÃËùѧµÄͳ¼ÆÑ§ÖªÊ¶ÎªËû×÷³öÑ¡Ôñ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖªÁâÐÎABCDµÄ±ß³¤Îª6£¬¡ÏBAD=60¡ã£¬AC¡ÉBD=0£¬½«ÁâÐÎABCDÑØ¶Ô½ÇÏßACÕÛÆð£¬µÃµ½ÈýÀâ×¶B-ACD£¬µãMÊÇÀâBCµÄÖе㣮
£¨1£©ÇóÖ¤£ºOM¡ÎÆ½ÃæABD£»
£¨2£©ÇóÖ¤£ºÆ½ÃæABC¡ÍÆ½ÃæMDO£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬Æä¹«²îΪ2£¬a2a4=4a3+1£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Çóa1+a3+a9+¡­+${a}_{{3}^{n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸