分析 求出函数的导数,由题意可得当x∈(0,1)时,3x2-2ax≥-1恒成立,运用参数分离和基本不等式即可得到右边的最小值,即可得到a的范围.
解答 解:函数f(x)=x2(x-a)的导数为
f′(x)=2x(x-a)+x2=3x2-2ax,
由题意可得当x∈(0,1)时,3x2-2ax≥-1恒成立,
即有2a≤3x+$\frac{1}{x}$,
由3x+$\frac{1}{x}$≥2$\sqrt{3}$,当且仅当3x=$\frac{1}{x}$即有x=$\frac{\sqrt{3}}{3}$∈(0,1)时,取得等号.
即有2a≤2$\sqrt{3}$,
则0<a≤$\sqrt{3}$,
即有a的取值范围是(0,$\sqrt{3}$].
点评 本题考查导数的几何意义,同时考查不等式恒成立问题转化为求最值,运用基本不等式是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 2x+2y+1=0 | B. | 2x+2y-1=0 | C. | 2x-2y-3=0 | D. | 2x-2y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{2}$,-$\frac{3π}{2}$) | B. | ($\frac{π}{2}$,$\frac{3π}{2}$) | C. | ($\frac{3π}{2}$,$\frac{π}{2}$) | D. | (-$\frac{3π}{2}$,-$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com