精英家教网 > 高中数学 > 题目详情
12.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,点P是该双曲线和圆x2+y2=a2+b2的一个交点,若sin∠PF1F2=3sin∠PF2F1,则该双曲线的离心率是(  )
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{2}$C.$\sqrt{10}$D.$\sqrt{5}$

分析 由已知条件推导出△PF1F2中,|OP|=c=$\frac{1}{2}$|F1F2|,∠F1PF2=90°,|PF1|=a,|PF2|=3a,由此能求出双曲线的离心率.

解答 解:∵F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,
∴双曲线的焦点坐标为F1(-c,0)、F2(c,0),
∵圆方程为x2+y2=a2+b2,即x2+y2=c2
∴该半径等于c,且圆经过F1和F2
∵点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$与圆x2+y2=a2+b2的交点,
∴△PF1F2中,|OP|=c=$\frac{1}{2}$|F1F2|,∴∠F1PF2=90°,
∵sin∠PF1F2=2sin∠PF2F1
∴|PF2|=3|PF1|.
设|PF1|=x,则|PF2|=3x,
由双曲线性质得3x-x=2x=2a,
∴|PF1|=a,则|PF2|=3a,
由勾股定理得(a)2+(3a)2=(2c)2
解得c=$\frac{\sqrt{10}}{2}$a,
∴e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$.
故选:B.

点评 本题给出双曲线与圆相交,在已知焦点三角形中的角度关系下求双曲线的离心率,着重考查了双曲线的标准方程与简单性质的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等差数列,(1+$\frac{x}{2}$)m(m∈N*)展开式的前三项的系数分别为a1,a2,a3
(1)求(1+$\frac{x}{2}$)m(m∈N*)的展开式中二项式系数最大的项;
(2)当n≥2(n∈N*)时,试猜测$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{{n}^{2}}}$与$\frac{1}{3}$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设α角属于第二象限,且|cos$\frac{α}{2}$|=-cos$\frac{α}{2}$,则$\frac{α}{2}$角属于( 三 )象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C的对边分别为a,b,c,若b=3a,c=2,则当角A取最大值时,△ABC的面积为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}+\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点(1,$\frac{\sqrt{2}}{2}$);椭圆C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}+\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>b2>0)的长轴长度与椭圆C1的短轴长度相等,且一个焦点的坐标为($\frac{\sqrt{3}}{3}$,0)
(1)求椭圆C1,C2的方程;
(2)若斜率为k的直线OM交椭圆C2于点M,垂直于OM的直线ON交椭圆C1于点N,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知空间向量$\vec a=(-2,-3,1)$,$\vec b=(2,0,4)$,$\vec c=(4,6,-2)$,则下列结论正确的是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$且$\overrightarrow{a}$⊥$\overrightarrow{c}$C.$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{a}$⊥$\overrightarrow{b}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F1、F2是双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,过F2作垂直于x轴的直线交双曲线于点P,若∠PF1F2=$\frac{π}{6}$,则双曲线的渐近线方程为$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如表所示:
价格x55.56.57
销售量y121064
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(1)求销售量y对奶茶的价格x的回归直线方程;
(2)欲使销售量为13杯,则价格应定为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有标号为1,2,3,4,5,6的六个小球,从中选出四个放入标号为1,2,3,4的四个
盒中,每盒只放一个小球.
(1)求奇数号盒只放奇数号小球的不同放法数;
(2)求奇数号小球必须放在奇数号盒中的不同放法数.
(3)若不许空盒且将六个小球都放入盒中,求所有不同的放法数.

查看答案和解析>>

同步练习册答案