精英家教网 > 高中数学 > 题目详情
5.已知tanα=2,α∈(0,$\frac{π}{2}$),则sin2α+cos2α=$\frac{1}{5}$.

分析 利用同角三角函数的基本关系、二倍角公式,求得要求式子的值.

解答 解:tanα=2,α∈(0,$\frac{π}{2}$),
则sin2α+cos2α=$\frac{2sinαcosα{+cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=$\frac{2tanα+1{-tan}^{2}α}{1{+tan}^{2}α}$
=$\frac{4+1-4}{1+4}$=$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值为(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,z(2i-1)=1+i,则复数z的共轭复数为(  )
A.$-\frac{1}{5}-\frac{3}{5}i$B.$\frac{1}{5}+\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足$\overrightarrow{AM}=λ\overrightarrow{MC},\overrightarrow{BM}=λ\overrightarrow{MD}$(其中λ>0,且λ≠1),若λ变化时,AB的斜率总为$-\frac{1}{2}$,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+$\frac{1}{2}{x^2}$-ax(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A,B,C,D四点共面,BC=2,AB2+AC2=20,$\overrightarrow{CD}=3\overrightarrow{CA}$,则|$\overrightarrow{BD}$|的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x+$\frac{x}{2}$=0;命题q:?x>0,x-x2<0,则下列命题是真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,a2=6,前7项和S7=84,则a6=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,若f(lnx)<f(2),则x的取值范围是(  )
A.(0,e2B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2

查看答案和解析>>

同步练习册答案