精英家教网 > 高中数学 > 题目详情
5.将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2与l2:x+2y=2平行的概率为P1,相交的概率为P2,则点P(36P1,36P2)与圆C:x2+y2=1098的位置关系是(  )
A.点P在圆C上B.点P在圆C外C.点P在圆C内D.不能确定

分析 本题是两个古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,共有36种结果,使得两条直线平行的a,b的值可以通过列举做出,还有一种就是使得两条直线重合,除此之外剩下的是相交的情况,求出概率,从而得到P(2,33),由圆心到点P的距离能判断点P与圆C的位置关系.

解答 解:由题意知本题是两个古典概型的问题,
试验发生包含的事件是一颗骰子投掷两次,第一次出现的点数记为a,
第二次出现的点数记为b,共有36种结果,
要使的两条直线?1:ax+by=2,?2:x+2y=2平行,
则a=2,b=4;a=3;b=6,共有2种结果,
当A=1,B=2时,两条直线平行,
其他33种结果,都使的两条直线相交,
∴两条直线平行的概率p1=$\frac{2}{36}$=$\frac{1}{18}$,
两条直线相交的概率${p}_{2}=\frac{33}{36}$=$\frac{11}{12}$,
∴点P(36P1,36P2)为P(2,33),
点P到圆C:x2+y2=1098的圆心C(0,0)的距离d=$\sqrt{4+1089}$=$\sqrt{1093}$<$\sqrt{1098}=r$,
∴点P在圆内.
故选:C.

点评 本题考查点与圆的位置关系的判断,是中档题,解题时要认真审题,注意概率、两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数y=3sinx+2的最小正周期是(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-a|x-1|,其中a∈R.
(1)若函数g(x)=f(x)-$\frac{3}{4}$有四个零点,求实数a的取值范围:
(2)设函数f(x)在区间[-2,2]上的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{(x-1)^{2}+a,x>1}\end{array}\right.$,若关于x的函数g(x)=xf(x)-$\frac{1}{2}$只有一个零点,则实数a的取值范围是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象相邻的对称轴之间的距离为2π,将其向左平移$\frac{π}{2}$个单位,所得函数图象与g(x)=cos(ωx+$\frac{π}{3}$)重合,则φ的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{7π}{12}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,1≤ax+y≤4恒成立,则实数a的取值范围(  )
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)对任意x∈[0,+∞)都有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=x,若函数g(x)=f(x)-loga(x+1)(0<a<1)在区间[0,4]上有两个零点,则实数a的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{3}$]B.[$\frac{1}{4}$,$\frac{1}{3}$)C.[$\frac{1}{5}$,$\frac{1}{3}$)D.[$\frac{1}{5}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}t}{2}}\\{y=\frac{1}{2}t}\end{array}\right.$曲线C2的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2上的动点M到直线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{2x-a,x≥1}\\{ln(1-x),x<1}\end{array}\right.$有两个零点,则实数a的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案