精英家教网 > 高中数学 > 题目详情
7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}t}{2}}\\{y=\frac{1}{2}t}\end{array}\right.$曲线C2的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2上的动点M到直线C1的距离的最大值.

分析 (Ⅰ)由ρ2=x2+y2,y=ρsinθ,x=ρcosθ,能求出C2的直角坐标方程.
(Ⅱ)曲线C1消去参数,得C1的直角坐标方程为$x+\sqrt{3}y+2=0$,求出圆心到直线C1的距离,由此能求出动点M到曲线C1的距离的最大值.

解答 解:(Ⅰ)$ρ=2\sqrt{2}cos({θ-\frac{π}{4}})=2({cos{\;}θ+sin{\;}θ})$,…(2分)
即ρ2=2(ρcosθ+ρsinθ),
∴x2+y2-2x-2y=0,
故C2的直角坐标方程为(x-1)2+(y-1)2=2.…(5分)
(Ⅱ)∵曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}t}{2}}\\{y=\frac{1}{2}t}\end{array}\right.$,
∴C1的直角坐标方程为$x+\sqrt{3}y+2=0$,
由(Ⅰ)知曲线C2是以(1,1)为圆心的圆,
且圆心到直线C1的距离$d=\frac{{\left|{1+\sqrt{3}+2}\right|}}{{\sqrt{{1^2}+{{({\sqrt{3}})}^2}}}}=\frac{{3+\sqrt{3}}}{2}$,…(8分)
∴动点M到曲线C1的距离的最大值为$\frac{{3+\sqrt{3}+2\sqrt{2}}}{2}$.…(10分)

点评 本题考查曲线的直角坐标方程的求法,考查点到曲线的距离的最大值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设等比数列{an}的前6项和S6=6,且1-$\frac{{a}_{2}}{2}$为a1,a3的等差中项,则a7+a8+a9=(  )
A.-2B.8C.10D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2与l2:x+2y=2平行的概率为P1,相交的概率为P2,则点P(36P1,36P2)与圆C:x2+y2=1098的位置关系是(  )
A.点P在圆C上B.点P在圆C外C.点P在圆C内D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:lg25-2lg$\frac{1}{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数)
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和Sn满足:S5=30,S10=110,数列{bn}的前n项和Tn满足:b1=1,bn+1-2Tn=1.
(1)求Sn与bn
(2)比较Snbn与2Tnan的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,则输出的结果是(  )
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.$336\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设Sn为数列{an}的前n项和,已知a1=2,对任意n∈N*,都有2Sn=(n+1)an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{$\frac{4}{{a}_{n}({a}_{n}+2)}$}的前n项和为Tn,求证:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g[f(-7)]=(  )
A.3B.-3C.2D.-2

查看答案和解析>>

同步练习册答案