精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an,则a10=(  )
A.511B.512C.1023D.1024

分析 根据等比数列通项公式,以及数列的递推公式即可求出

解答 解:∵Sn+1=Sn+2an
∴Sn+1-Sn=2an
即an+1=2an
∵a1=1,
∴数列{an}是以1为首项,以2为公比的等比数列,
∴an=2n-1
∴a10=29-1=512,
故选:B

点评 本题考查了等比数列通项公式,以及数列的递推公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x∈Z|x2-16<0},B={x|x2-4x+3>0},则A∩B=(  )
A.{x|-4<x<1或3<x<4}B.{-4,-3,-2,-1,0,3,4}
C.{x|x<1或3<x<4}D.{-3,-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知B=2C,c=2,a=1.
(1)求边长b的值;
(2)求sin(2B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,角α的终边OP与单位圆交于点P,角β的终边OQ与单位圆交于点Q.
(1)写出P、Q两点的坐标;
(2)试用向量的方法证明关系式:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.现有一张长为108cm,宽为acm(a<108)的长方形铁皮ABCD,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失,如图,在长方形ABCD的一个角上剪下一块边长为x(cm)的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼后作为铁皮容器的侧面,设长方体的高为y(cm),体积为V(cm3).
(1)求y关于x的函数关系式;
(2)求该铁皮容器体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数 f (x)=($\sqrt{3}$cosωx+sinωx)•cosωx-$\frac{{\sqrt{3}}}{2}$,其中ω>0,且f(x)的最小正周期为π.
(Ⅰ) 求ω 的值及函数f(x)的单调递减区间;
(Ⅱ) 在锐角△ABC中,角A,B,C的对边分别为a,b,c,若角B满足 f ($\frac{B}{2}-\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,且b=3,sinA+sinC=$\frac{{2\sqrt{3}}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=1,且对任意的正整数n,有an+1=2an成立,则a3a5=(  )
A.$\frac{1}{64}$B.32C.64D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x3-ax2+x在点(1,f(1))处的切线与x+6y=0垂直,则实数a=-1.

查看答案和解析>>

同步练习册答案