精英家教网 > 高中数学 > 题目详情
16.已知椭圆E:$\frac{x^2}{8}$+$\frac{y^2}{4}$=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4$\sqrt{2}$(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.
(1)若△MAB垂心的纵坐标为-4$\sqrt{7}$,求点的P坐标;
(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

分析 (1)设M(4$\sqrt{2}$,m),由A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),垂心H(4$\sqrt{2}$,-4$\sqrt{7}$),由BH⊥MA,运用直线斜率公式和斜率之积为-1,可得m,再由直线MA与椭圆求得交点P;
(2)设M(4$\sqrt{2}$,m),由A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),可得MA的方程为y=$\frac{m}{6\sqrt{2}}$(x+2$\sqrt{2}$),代入椭圆方程,运用韦达定理,解得P的坐标;同理求得Q的坐标,运用直线的斜率公式可得PQ的斜率,由点斜式方程可得PQ的方程,再由恒过定点思想,即可得到所求定点.

解答 解:(1)设M(4$\sqrt{2}$,m),由A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),
垂心H(4$\sqrt{2}$,-4$\sqrt{7}$),由BH⊥MA,可得
kBH•kMA=-1,即有$\frac{4\sqrt{7}}{-2\sqrt{2}}$•$\frac{m}{6\sqrt{2}}$=-1,
可得m=$\frac{6}{\sqrt{7}}$,
由MA的方程:y=$\frac{1}{\sqrt{14}}$(x+2$\sqrt{2}$),代入椭圆方程,可得
8x2+4$\sqrt{2}$x-48=0,
解得x=-2$\sqrt{2}$,或$\frac{3\sqrt{2}}{2}$,即有P($\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{7}}{2}$);
(2)设M(4$\sqrt{2}$,m),由A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),
可得MA的方程为y=$\frac{m}{6\sqrt{2}}$(x+2$\sqrt{2}$),代入椭圆方程,可得
(36+m2)x2+4$\sqrt{2}$m2x+8m2-288=0,
由-2$\sqrt{2}$xP=$\frac{8{m}^{2}-288}{36+{m}^{2}}$,可得xP=$\frac{(72-2{m}^{2})\sqrt{2}}{36+{m}^{2}}$,
yP=$\frac{m}{6\sqrt{2}}$(xP+2$\sqrt{2}$)=$\frac{24m}{36+{m}^{2}}$;
又MB:y=$\frac{m}{2\sqrt{2}}$(x-2$\sqrt{2}$),代入椭圆方程,可得
(4+m2)x2-4$\sqrt{2}$m2x+8m2-32=0,
由2$\sqrt{2}$+xQ=$\frac{4\sqrt{2}{m}^{2}}{4+{m}^{2}}$,可得xQ=$\frac{(2{m}^{2}-8)\sqrt{2}}{4+{m}^{2}}$,
yQ=$\frac{m}{2\sqrt{2}}$(xQ-2$\sqrt{2}$)=-$\frac{8m}{4+{m}^{2}}$,
即有直线PQ的斜率为k=$\frac{{y}_{Q}-{y}_{P}}{{x}_{Q}-{x}_{P}}$=$\frac{8m}{\sqrt{2}(12-{m}^{2})}$,
则直线PQ:y-$\frac{24m}{36+{m}^{2}}$=$\frac{8m}{\sqrt{2}(12-{m}^{2})}$(x-$\frac{(72-2{m}^{2})\sqrt{2}}{36+{m}^{2}}$),
化简即有y=$\frac{8m}{12-{m}^{2}}$($\frac{\sqrt{2}}{2}$x-1),
由$\frac{\sqrt{2}}{2}$x-1=0,解得x=$\sqrt{2}$,y=0.
故直线PQ恒过定点($\sqrt{2}$,0).

点评 本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查直线方程的运用以及直线的斜率公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图程序框图中,当n∈N*(n>1)时,函数fn(x)表示函数fn-1(x)的导函数,即fn(x)=f′n-1(x).若输入函数f1(x)=sinx+cosx,则输出的函数fn(x)为(  )
A.$\sqrt{2}sin(x+\frac{π}{4})$B.$-\sqrt{2}sin(x+\frac{π}{4})$C.$\sqrt{2}sin(x-\frac{π}{4})$D.$-\sqrt{2}sin(x-\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场第一年销售计算机5000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销售量达到30000台?用语句描述.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.老子《道德经》云“道生一,一生二,二生三,三生万物.”这与裴波那契数列非常吻合,对于裴波那契数列{an},可知${a}_{1}^{2}$+${a}_{2}^{2}$=a2a3,${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$=a3a4,…,则$\frac{{a}_{1}^{2}{+a}_{2}^{2}{+a}_{3}^{2}+…{+a}_{10}^{2}}{{a}_{10}}$=a11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C1的圆心为直线l1:x-y+1=0与直线l2:2x+y+2=0的交点,且圆C1过点(-$\frac{1}{2},\frac{\sqrt{3}}{2}$).
(I)求圆C1的方程;
(Ⅱ)圆C2:x2+y2-8x+12=0,已知P(x0,y0)为圆C2上的动点,由点P向圆C1作两条切线分别交y轴于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线f(x)=ln(2x-1)上的点到直线2x-y+3=0的最短距离是(  )
A.1B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=1g(-x2+x+6)的单调递减区间为[$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个V形容器,里面分层放有乒乓球,假设从下往上,第-层放有3个,第二层放有5个,第三层放有7个,以此类推,最上面一层放有33个,问:
(1)一共放有多少层乒乓球?
(2)第六层放有多少个乒乓球?
(3)容器内共放有多少个乒乓球?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x)=4x2-(m-1)x+5,在[2,+∞)上是增函数,在(-∞,2]上 是减函数,求f(-1)的值.

查看答案和解析>>

同步练习册答案