分析 根据已知中对于裴波那契数列{an},可知${a}_{1}^{2}$+${a}_{2}^{2}$=a2a3,${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$=a3a4,…,总结等式的变化规律,可得答案.
解答 解:∵对于裴波那契数列{an},可知:
${a}_{1}^{2}$+${a}_{2}^{2}$=a2a3,
${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$=a3a4,
…,
归纳可得:${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$+…+${a}_{10}^{2}$=a10a11,
∴$\frac{{a}_{1}^{2}{+a}_{2}^{2}{+a}_{3}^{2}+…{+a}_{10}^{2}}{{a}_{10}}$=a11,
故答案为:a11
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | (m+n)2 | C. | -(m+n)2 | D. | (m-n)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2}^{n-4}}$ | B. | $\frac{1}{{2}^{n-3}}$ | C. | $\frac{1}{{2}^{n-3}}$+4 | D. | $\frac{1}{{2}^{n-2}}$+6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com