精英家教网 > 高中数学 > 题目详情
1.(1)已知x>0,y>0,x+2y=8,求xy的最大值
(2)设x>-1,求函数y=x+$\frac{4}{x+1}$+6的最小值.

分析 (1)根据基本不等式的性质得到$x+2y≥2\sqrt{2xy}$,通过平方整理得xy≤8即可;(2)得到y=x+1+$\frac{4}{x+1}$+5,根据基本不等式的性质求解即可.

解答 解:(1)x>0,y>0,
$x+2y≥2\sqrt{2xy}$,即$8≥2\sqrt{2xy}$,
两边平方整理得xy≤8,
当且仅当x=4,y=2时取最大值8;
(2)∵x>-1,∴x+1>0.
∴y=x+$\frac{4}{x+1}$+6=x+1+$\frac{4}{x+1}$+5
≥2$\sqrt{(x+1)•\frac{4}{x+1}}$+5=9,
当且仅当x+1=$\frac{4}{x+1}$,即x=1时,取等号,
∴x=1时,函数的最小值是9.

点评 本题考查了基本不等式的性质,考查转化思想,注意应用性质需满足的条件,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$cos2ωx的最小正周期为π,则f(x)在闭区间[0,$\frac{π}{4}$]的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设P(3,y)是角α终边上的一个点,若$cosα=\frac{3}{5}$,则y=±4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求值:$arcsin({cos\frac{2π}{3}})$=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x∈[1,2],使x2-a≥0”是真命题,则a的范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某程序框图如图所示,运行该程序,则输出的S的值为(  )
A.3B.11C.43D.171

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax4+x3+bx2+2x+c(其中a、b、c为常数)为奇函数,f′(x)是函数f(x)的导函数,则f′(2)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.欲证$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需证(  )
A.${(\sqrt{7}-1)^2}>{(\sqrt{11}-\sqrt{5})^2}$B.${(\sqrt{7}+1)^2}>{(\sqrt{11}+\sqrt{5})^2}$C.${(\sqrt{7}+\sqrt{5})^2}>{(\sqrt{11}+1)^2}$D.${(\sqrt{7}-\sqrt{5})^2}>{(\sqrt{11}-1)^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C的极坐标方程为ρ=6cosθ+2sinθ.(1)写出曲线C的一个参数方程;
(2)若直线l:$\left\{\begin{array}{l}{x=m+t}\\{y=3t}\end{array}\right.$ (t为参数)与曲线C有且仅有一个公共点,求实数m的值.

查看答案和解析>>

同步练习册答案