精英家教网 > 高中数学 > 题目详情
12.设P(3,y)是角α终边上的一个点,若$cosα=\frac{3}{5}$,则y=±4.

分析 由条件利用任意角的三角函数的定义,求得y的值.

解答 解:∵P(3,y)是角α终边上的一个点,若$cosα=\frac{3}{5}$=$\frac{3}{\sqrt{9{+y}^{2}}}$,则y=±4,
故答案为:±4.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的公差d≠0,前9项的和S9=54
(1)求①a5
②若S5=20,将数列{an}进行如下分组:(a1);(a2,a3),(a4,a5,a6,a7),(a8,a9,a10,…,a15,),…,求前n组所有数的和Tn
(2)若存在自然数n1,n2,n3,…,nt(t是正整数),满足5<n1<n2<n3<…<nt,使得a3,a5,a${\;}_{{n}_{1}}$,a${\;}_{{n}_{2}}$,…a${\;}_{{n}_{t}}$,…成等比数列,求所有整数a3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后,若所得图象与原图象重合,则ω的最小值等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线的倾斜角为α,斜率为k,求:
(1)设30°≤α≤60°,求k的取值范围;
(2)设120°≤α≤135°,求k的取值范围;
(3)设45°≤α≤150°,求k的取值范围;
(4)设k≥$\sqrt{3}$,求α的取值范围;
(5)设k≤-$\sqrt{3}$,求α的取值范围;
(6)设-1<k<1,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y∈R,a>1,b>1,若ax=by=3,a+2b=6$\sqrt{2}$,则$\frac{1}{x}$+$\frac{1}{y}$的最大值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα=$\frac{\sqrt{5}}{5}$且α是第二象限角.
(1)求tanα的值;    
(2)求sinα•cosα-cos2α的值;
(3)求$\frac{sin(\frac{π}{2}-α)cos(-α-π)}{cos(-π+α)cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在如图程序框图中,已知:f0(x)=(x+9)ex,则输出的是(  )
A.2019ex+xexB.2018ex+xexC.2017ex+xexD.2016ex+xex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知x>0,y>0,x+2y=8,求xy的最大值
(2)设x>-1,求函数y=x+$\frac{4}{x+1}$+6的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要得到函数y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin2x的图象(  )
A.向左平移$\frac{2π}{3}$个单位B.向右平移$\frac{2π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

同步练习册答案