精英家教网 > 高中数学 > 题目详情
甲、乙、丙、丁、戊五人并排站成一排,如果甲必须站在乙的右边(甲、乙可以不相邻)那么不同的排法共有(  )
A、24种B、60种
C、90种D、120种
考点:排列、组合的实际应用
专题:排列组合
分析:根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B站在A的左边与B站在A的右边是等可能的,使用倍分法,计算可得答案.
解答: 解:根据题意,使用倍分法,
五人并排站成一排,有A55种情况,
而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,
则B站在A的右边的情况数目为
1
2
×A55=60.
故选B.
点评:本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线x2+y2=9上各点的横坐标保持不变,纵坐标缩短为原来的一半,则所得曲线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数2i(1+i)的模是(  )
A、4
B、2
2
C、3
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

在底面半径为3,高为4+2
3
的圆柱形有盖容器内,放入一个半径为3的大球后,再放入与球面、圆柱侧面及上底面均相切的小球,则放入小球的个数最多为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
u
=(-2,2,5)
v
=(6,-4,4)
u
v
分别是平面α,β的法向量,则平面α,β的位置关系式(  )
A、平行
B、垂直
C、所成的二面角为锐角
D、所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f′(x),且对任意x>0,都有f′(x)>
f(x)
x

(Ⅰ)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

记者在街上随机抽取10人,在一个月内接到的垃圾短信条数统计的茎叶图如图:
(Ⅰ)计算样本的平均数及方差;
(Ⅱ)现从10人中随机抽出2名,设选出者每月接到的垃圾短信在10条以下的人数为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点,
(Ⅰ)求直线BC与A1C所成的角的度数. 
(Ⅱ)求证:A1C∥平面BDE.

查看答案和解析>>

同步练习册答案