精英家教网 > 高中数学 > 题目详情
在底面半径为3,高为4+2
3
的圆柱形有盖容器内,放入一个半径为3的大球后,再放入与球面、圆柱侧面及上底面均相切的小球,则放入小球的个数最多为(  )
A、4B、5C、6D、7
考点:球的体积和表面积
专题:空间位置关系与距离,球
分析:画出图形,求出小球的半径,小球球心所在圆的半径,然后判断放入小球的个数.
解答: 解:画出圆锥与大球以及小球相切的轴截面图形(如图左图),
设小球的半径为r则依题意(r+3)2=(r-3)2+(4+2 
3
-3-r)2.解得r=1,
则小球的球心在半径为2的圆上,并且小球的直径为2,小球球心所在截面(如图右图)两个小球的球心距离是2,边长为2的正六边形恰好在半径为2上.
故能放6个.
故选:C.
点评:本题考查球与圆柱相切,几何体的截面图形、空间图形的判断,考查空间想象能力以及判断能力,难度比较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当k取什么值时,不等式2kx2+kx-
3
8
<0
对一切实数都成立?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
2
)(ω>0)
的最小正周期为π,则f(x)(  )
A、在(0,
π
2
)
单调递减
B、在(
π
4
4
)
单调递减
C、在(0,
π
2
)
单调递增
D、在(
π
4
4
)
单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为
3
,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(  )
A、
6
B、
3
C、π
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、xy≠10是x≠5或y≠2的充分不必要条件
B、若命题p:?x∈R,x2+x+1≠0,则¬p:?x∈R,x2+x+1=0
C、线性相关系数r的绝对值越接近1,表示两变量的相关性越强.
D、用频率分布直方图估计平均数,可以用每个小矩形的高乘以底边中点横坐标之后加和

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线F:
x2
a2
-
y2
b2
=1(a>0,b>0),F1F2
为双曲线F的焦点.若双曲线F存在点M,满足
1
2
|MF1|=|MO|=|MF2|
(O为原点),则双曲线F的离心率为(  )
A、
3
B、
5
C、
6
D、
5
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁、戊五人并排站成一排,如果甲必须站在乙的右边(甲、乙可以不相邻)那么不同的排法共有(  )
A、24种B、60种
C、90种D、120种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-3sin2x-cos2x+2

(Ⅰ)求f(x)的最大值;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足
b
a
=
3
sin(2A+C)
sinA
=2+2cos(A+C)
,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年6月“神舟”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为
3
4
1
3
1
2
2
3
,并且各个环节的直播收看互不影响.
(Ⅰ)现有该班甲、乙、丙三名同学,求这3名同学至少有2名同学收看发射直播的概率;
(Ⅱ)若用X表示该班某一位同学收看的环节数,求X的分布列与期望.

查看答案和解析>>

同步练习册答案