精英家教网 > 高中数学 > 题目详情
抛物线y2=4x的焦点到双曲线
x2
4
-
y2
12
=1的渐近线的距离为(  )
A、
3
2
B、
3
C、1
D、
3
6
考点:抛物线的简单性质,双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先确定抛物线的焦点位置,进而可确定抛物线的焦点坐标,再由题中条件求出双曲线的渐近线方程,再代入点到直线的距离公式即可求出结论.
解答: 解:抛物线y2=4x的焦点在x轴上,且p=2,
∴抛物线y2=4x的焦点坐标为(1,0),
由题得:双曲线
x2
4
-
y2
12
=1的渐近线方程为
3
x±y=0,
∴F到其渐近线的距离d=
3
3+1
=
3
2

故选:A.
点评:本题考查抛物线的性质,考查双曲线的基本性质,解题的关键是定型定位,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是抛物线y2=4x上的一个动点,F为抛物线焦点,B(3,2),则|PB|+|PF|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x+1)8的展开式中x2的系数是(  )
A、28
B、56
C、
3
4
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,若∠BAC=90°,则异面直线BA与AC1所成的角等于(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<b,且f(x)=
1
5x
-log5x,则下列大小关系式成立的是(  )
A、f(b)<f(
a+b
2
)<f(
ab
B、f(
a+b
2
)<f(b)<f(
ab
C、f(
ab
)<f(
a+b
2
)<f(a)
D、f(a)<f(
a+b
2
)<f(
ab

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1-3x)8=a0+a1x+a2x2+…+a8x8,则|a0|+|a1|+|a2|+…+|a8|的值为(  )
A、1
B、28
C、38
D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{
a
b
c
}是空间的一组单位正交基底,而{
a
-
b
c
a
+
b
}是空间的另一组基底.若向量
p
在基底{
a
b
c
}下的坐标为(6,4,2),则向量
p
在基底{
a
-
b
c
a
+
b
}下的坐标为(  )
A、(1,2,5)
B、(5,2,1)
C、(1,2,3)
D、(3,2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

数80100除以9所得余数是(  )
A、0B、8C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2是椭圆C1与双曲线C2
x2
4
-
y2
5
=1的公共焦点,A、B分别是椭圆C1和双曲线C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则椭圆C1的离心率是(  )
A、
3
5
B、
3
2
C、
3
14
D、
3
14
14

查看答案和解析>>

同步练习册答案