精英家教网 > 高中数学 > 题目详情
如图,AE是圆O的切线,A是切点,AD⊥OE于D,割线EC交圆O于B、C两点.
(Ⅰ)证明:O,D,B,C四点共圆;
(Ⅱ)设∠DBC=50°,∠ODC=30°,求∠OEC的大小.
考点:与圆有关的比例线段
专题:直线与圆
分析:(Ⅰ)连结OA,则OA⊥EA.由已知条件利用射影定理和切割线定理推导出
ED
BD
=
EC
EO
,由此能够证明O,D,B,C四点共圆.
(Ⅱ)连结OB.∠OEC+∠OCB+∠COE=180°,能求出∠OEC的大小.
解答: (Ⅰ)证明:连结OA,则OA⊥EA.
由射影定理得EA2=ED•EO.
由切割线定理得EA2=EB•EC,
∴ED•EO=EB•EC,即
ED
BD
=
EC
EO

又∠OEC=∠OEC,∴△BDE∽△OCE,
∴∠EDB=∠OCE.
∴O,D,B,C四点共圆.…(6分)
(Ⅱ)解:连结OB.因为∠OEC+∠OCB+∠COE=180°,
结合(Ⅰ)得:
∠OEC=180°-∠OCB-∠COE
=180°-∠OBC-∠DBE
=180°-∠OBC-(180°-∠DBC)
=∠DBC-∠ODC=20°.
∴∠OEC的大小为20°.…(10分)
点评:本题考查四点共圆的证明,考查角的大小的求法,是中档题,解题时要认真审题,注意射影定理、切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-5≤0
x-2y+1≤0
x-1≥0
,则z=x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两中学各选出7名高一学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲校学生成绩的众数是80,乙校学生成绩的中位数是86,则x+y的值为(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+8.
(Ⅰ)求公差d的值;
(Ⅱ)若a1=1,设Tn是数列{
1
anan+1
}的前n项和,求使不等式Tn
1
18
(m2-5m)
对所有的n∈N*恒成立的最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(Ⅰ)求从甲、乙、丙三个车床中抽取的零件的件数;
(Ⅱ)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班研究性学习小组在今年11月11日“双11购物节”期间,对[25,55)岁的人群随机抽取了1000人进行了一次是否参加“抢购商品”的调查,得到如下统计表和各年龄段人数频率分布直方图.
组数分组抢购商品
的人数
占本组
的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(Ⅰ)求统计表中a,p的值;
(Ⅱ)从年龄在[40,50)岁参加“抢购商品”的人群中,采用分层抽样法抽取9人参满意度调查,其中3人感到满意,记感到满意的3人中年龄在[40,50)岁的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15)
,…,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)估计该组成绩的中位数(保留到小数点后两位)
(3)假设第一、五组中任意两个学生成绩都不相同,若从第一、五组所有成绩中随机取出两个,求这两个成绩分别来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2+2x-4y=0的圆心,且与直线2x+3y=0垂直的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是(  )
A、若m∥α,n∥β,α∥β,则m∥n
B、若m∥α,n∥β,α⊥β,则m⊥n
C、若m⊥α,n⊥β,α⊥β,则m∥n
D、若m⊥α,n∥β,α∥β,则m⊥n

查看答案和解析>>

同步练习册答案