精英家教网 > 高中数学 > 题目详情
各项均为正数的等比数列中:a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(  )
A、12
B、10
C、1+log35
D、2+log35
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:先根据等比中项的性质可知a5a6=a4a7,进而根据a5a6+a4a7=18,求得a5a6的值,最后根据等比数列的性质求得log3a1+log3a2+…log3a10=log3(a5a65答案可得.
解答: 解:∵a5a6=a4a7
∴a5a6+a4a7=2a5a6=18
∴a5a6=9
∴log3a1+log3a2+…log3a10=log3(a5a65=5log39=10
故选B.
点评:本题主要考查了等比数列的性质.解题的关键是灵活利用了等比中项的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用1,2,3,4四个数字可无重复的任意排成三位数,并把这三位数由小到大排成一个数列{an},若an=341,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+2x+y2-4y+3=0与直线x+y+b=0相切,正实数b的值为(  )
A、
1
2
B、1
C、2
2
-1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=8的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长是(  )
A、28
B、14-8
2
C、14+8
2
D、8
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
π
6
π
2
),sin(α+
π
3
)=
1
3
,则sinα=(  )
A、
2-3
3
6
B、
3
3
-2
6
C、
1-2
6
6
D、
1+2
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-ax+1>0对任意x∈[0,2]恒成立,则实数a的取值范围为(  )
A、(-∞,
5
2
B、(-2,2)
C、[-2,2]
D、(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设n是自然数,f(n)=1+
1
2
+
1
3
+…+
1
n
,经计算可得,f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
.观察上述结果,可得出的一般结论是(  )
A、f(2n)>
2n+1
2
B、f(n2)≥
n+2
2
C、f(2n)≥
n+2
2
D、f(2n)>
n+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
a2
+
y2
b2
=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为(  )
A、
1
3
B、
1
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-
1
2
sin2x-
3
2
cos2x(x∈R)
(1)当x∈[-
π
12
12
]时,求函数f(x)取得最大值时的值;
(2)设锐角△ABC的内角A,B,C的对应边分别是a,b,c,且a=1,c∈N*,若向量
m
=(sinB,2),
n
=(-1,sinA),
n
m
,求c的值.

查看答案和解析>>

同步练习册答案