精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
考点:等差关系的确定
专题:等差数列与等比数列
分析:根据等差数列的定义以及充要条件的定义进行证明即可.
解答: 解:充分性:∵an+an+1=2n+1,
∴an+an+1=n+1+n,
即an+1-(n+1)=-(an-n),
若a1=1,则a2-(1+1)=-(a1-1)=0,
∴a2=2,以此类推得到an=n,
此时{an}为等差数列.
必要性:
∵an+an+1=2n+1,
∴an+2+an+1=2n+3,
两式相减得an+2-an=2,
若数列{an}为等差数列,则an+2-an=2d,
即2d=2,∴d=1.
则an+an+1=2an+1=2n+1,
∴an=n,即a1=1成立.
综上数列{an}为等差数列的充要条件是a1=1.
点评:本题主要考查等差数列的定义以及充要条件的应用,考查学生的推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知S7=28,S8=36,则S15=(  )
A、210B、120
C、64D、56

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(
12
,2)在函数f(x)=2sin(ωx+φ)(ω>0,0<|φ|<
π
2
)的图象上,直线x=x1、x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
2

(1)求函数f(x)的单递增区间和其图象的对称中心坐标;
(2)设A={x|
π
4
≤x≤
π
2
},B={x||f(x)-m|<1},若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(
3
sin2x-1,cosx),
n
=(
1
2
,cosx),设函数f(x)=
m
n
.求函数f(x)的最小正周期及在[0,
π
2
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(
1
3
)
lg0.2
×2lg30

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
x(1-x)(x<0)
x(1+x)(x>0)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(2sinβ,2cosβ),且|2k
a
+
b
|=
3
|2
a
-k
b
|
(k>0),设
a
b
的夹角为θ.
(1)求cosθ与k的函数关系式;
(2)当θ取最大值时,求α,β满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ为第三象限角,试判断cos
θ
3
的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

若第一象限内的动点P(x,y)满足
1
x
+
1
2y
+
3
2xy
=1,R=xy
,则以P为圆心R为半径且面积最小的圆的方程为
 

查看答案和解析>>

同步练习册答案