精英家教网 > 高中数学 > 题目详情
对于一个有限数列P=(P1,P2,L,Pn),P的蔡查罗和(蔡查罗为一数学家)定义为
1
n
(S1+S2+…+Sn),其中Sk=P1+P2+…+Pk(1≤k≤n),若一个99项的数列(P1,P2,…,P99)的蔡查罗和为1000,那么100项数列(1,P1,P2,…,P99)的蔡查罗和为(  )
A、991B、992
C、993D、999
考点:数列的求和
专题:等差数列与等比数列
分析:由于一个99项的数列(P1,P2,…,P99)的蔡查罗和为1000,可得1000=
1
99
(S1+S2+…+S99),其中Sk=P1+P2+…+Pk(1≤k≤99),即可得出100项数列(1,P1,P2,…,P99)的蔡查罗和=
100+99×1000
100
解答: 解:∵一个99项的数列(P1,P2,…,P99)的蔡查罗和为1000,
∴1000=
1
99
(S1+S2+…+S99),其中Sk=P1+P2+…+Pk(1≤k≤99),
∴100项数列(1,P1,P2,…,P99)的蔡查罗和=
100+99×1000
100
=991.
故选:A.
点评:本题考查了新定义“蔡查罗和”及其平均数的计算方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1,其中a>0,a≠1.
(1)求f(x)的解析式;
(2)解关于x的不等式-1<f(x-2)<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题的说法错误的是(  )
A、若p∧q为假命题,则p,q均为假命题.
B、“x=1”是“x2-3x+2=0”的充分不必要条件.
C、对于命题p:?x∈R,x2+x+1>0,则?p:?x∈R,x2+x+1≤0.
D、命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ∈(0,
π
2
)且函数y=(sinθ) x2-6x+5的最大值为16,则θ
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x0∈R,e x0≤0
B、?x∈R,2x>x2
C、“a>1,b>1”是“ab>1”的充要条件
D、设
a
b
为向量,则“|
a
b
|=|
a
||
b
|”是“
a
b
”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+
f(x)
x
>0,则关于x的函数g(x)=f(x)+
1
x
的零点个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知BC=8,AC=5,三角形面积为12,则cosC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,
OP
=(x,y)
OA
=(a,0)
OB
=(0,a)
OC
=(3,4)
,记|
PA
|、|
PB
|、|
PC
|中的最大值为M,当a取遍一切实数时,M的取值范围是(  )
A、[
7
,+∞)
B、[7+2
6
,+∞)
C、[7-2
6
,+∞)
D、[7,7+2
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),当x≥0时,f(x)=x2,则不等式f(1-2x)<f(3)的解集是
 

查看答案和解析>>

同步练习册答案