精英家教网 > 高中数学 > 题目详情
解不等式:
4x-1
4x+1
1
3
考点:指、对数不等式的解法
专题:不等式的解法及应用
分析:由不等式左边的分母恒大于0,两边同时乘以3(4x+1),化简后求解指数不等式得答案.
解答: 解:由
4x-1
4x+1
1
3

得3•4x-3<4x-1,
即2•4x<2,4x<1,
∴x<0.
∴不等式
4x-1
4x+1
1
3
的解集为(-∞,0).
点评:本题考查了分式不等式和指数不等式的解法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点P(x,y)满足x-y+1=0,则当
x2+y2+2x+10y+26
-
x2+y2-6y+9
取得最大值时,点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

可导函数在闭区间的最大值必在(  )
A、取得极值点
B、导数为0的点
C、极值点或区间端点
D、区间端点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集为(-1,7)时,求实数a,b的值;
(2)当a∈[-1,2)时,f(3)<0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R)
(Ⅰ)若a=1,b=1时,求函数f(x)的单调区间;
(Ⅱ)若g(x)=f(x)+f′(x)是奇函数,讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1,F2是左右焦点,求三角形PF1F2内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
4
x
-(4a+
1
a
)lnx,g(x)=a-
4
a
-(4x+
1
x
)lna(x>0),其中a是正常数.若f′(1)=g′(
1
2
),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12;
(1)求a,b,c的值;
(2)若(a-1)3+2a-4=0,(b-1)3+2b=0,求a+b的值;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x-a)2+y2=4的圆心坐标为(3,0),则实数a=
 

查看答案和解析>>

同步练习册答案