精英家教网 > 高中数学 > 题目详情
4.已知实数a,b满足log2(a+b)=log4(4-4a2b2),当b=1时,a=$\frac{3}{5}$.当a-b取得最大值时,ab=$\frac{1}{2}$.

分析 先根据对数的运算性质,得到(a+b)2=4-4a2b2,继而求出当b=1时,a的值,再根据(a-b)2=(a+b)2-4ab,得到(a-b)2=4-4a2b2-4ab=-4(ab-$\frac{1}{2}$)2+5,
根据二次函数的性质即可求出答案.

解答 解:∵log2(a+b)=log4(4-4a2b2),
∴(a+b)2=4-4a2b2
当b=1时,
∴(a+1)2=4-4a2
解得a=-1,a=$\frac{3}{5}$,
∵b=1,a+b=0,
∴a≠1,
∴a=$\frac{3}{5}$,
∵4-4a2b2>0,且a+b>0,
∴-1<ab<1,且a+b>0,
∵(a-b)2=(a+b)2-4ab,
∴(a-b)2=4-4a2b2-4ab=-4(ab-$\frac{1}{2}$)2+5,
∴当ab=$\frac{1}{2}$时,(a-b)2有最大值,
∴当a-b取得最大值时,ab=$\frac{1}{2}$,
故答案为:$\frac{3}{5}$,$\frac{1}{2}$.

点评 本题考查了对数的运算性质和二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若${C}_{21}^{k-4}$<${C}_{21}^{k-2}$<${C}_{21}^{k-1}$(k∈N),则k的取值范围是{k|4≤k≤11,k∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx+x2f′(1)+${∫}_{1}^{e}$$\frac{1}{x}$dx,且f′(2)=7,
(1)求曲线f(x)在x=1处的切线方程;
(2)若函数f(x)>m对于x>$\frac{1}{e}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是(  )
A.{$\frac{1}{3}$,$\frac{2}{3}$}B.{$\frac{1}{3}$,$\frac{2}{3}$,$\frac{π}{6}$}C.{V|$\frac{1}{3}$≤V≤$\frac{2}{3}$}D.{V|0<V≤$\frac{2}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=asinx+bcosx(a,b为常数,a≠0)在x=$\frac{π}{4}$处取得最小值,则函数$g(x)=f({\frac{3π}{4}-x})$是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$({\frac{3π}{2},0})$对称
C.奇函数且它的图象关于点$({\frac{3π}{2},0})$对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x+1<0},B={x|x-3<0},则∁RA∩B=(  )
A.{x|1<x<3}B.{x|-1≤x<3}C.{x|x<-1}D.{x|x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某人在5场投篮比赛中得分的茎叶图如图所示,若5场比赛的平均得分为11分,则则5场比赛得分的方差为$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某公司从四名大学毕业生甲、乙、丙、丁中录用两人,若这四人被录用的机会均等,则甲与乙中至少有一人被录用的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到函数y=cosx的图象,只需将函数$y=sin(2x+\frac{π}{3})$的图象上所有的点的(  )
A.横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{3}$个单位长度
C.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位长度
D.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

同步练习册答案