精英家教网 > 高中数学 > 题目详情
下列说法中正确的是(  )
A、“x>5”是“x>3”必要不充分条件
B、命题“对?x∈R,恒有x2+1>0”的否定是“?x∈R,使得x2+1≤0”
C、?m∈R,使函数f(x)=x2+mx(x∈R)是奇函数
D、设p,q是简单命题,若p∨q是真命题,则p∧q也是真命题
考点:命题的真假判断与应用
专题:简易逻辑
分析:必须对选项一一加以判断:对A应用充分必要条件定义解决;对B应用命题的否定确定;对C应用奇函数的定义解决;对D应用真值表判断.
解答: 解:对A,因为x>5可推出x>3,所以“x>5”是“x>3”充分不必要条件,故A错;
对B,由全称命题或存在性命题的否定得:B正确;
对C,若函数f(x)=x2+mx(x∈R)是奇函数,则由定义知不存在m,故C错;
对D,因为p,q是简单命题,若p∨q是真命题,则p,q中至少有一个为真,所以p∧q可真可假,故D错.
故选:B
点评:本题主要考查简易逻辑的基础知识:充分必要条件、命题的否定、复合命题的真值表等,注意分析和逻辑推理,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y-3)2=9和圆C2:(x-4)2+(y-3)2=9.
(1)若直线l过点A(-5,1),且被圆C1截得的弦长为2
5
,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、“p∨q为真”是“p∧q为真”的充分不必要条件
B、设有一个回归直线方程为
?
y
=2-1.5x
,则变量x每增加一个单位,
?
y
平均减少1.5个单位
C、若a,b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
4
D、已知空间直线a,b,c,若a⊥b,b⊥c,则a∥c

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
3
 -3+4x-x2的单调增区间为(  )
A、[1,2]B、R
C、(-∞,2]D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足iz=2+4i,则复数z=(  )
A、2+4iB、2-4i
C、4-2iD、4+2i

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}:a0=2,a1=16,an+2=16an+1-63an,n∈N*,则a2005被64除的余数为(  )
A、0B、2C、16D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)=Asin(2x+φ)+b(A>0,0<φ<π)的最大值是3,最小值为-1
(1)求A、b、φ的值;
(2)求函数y=f(x+
π
4
)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,景点A在景点B的正北方向2千米处,景点C在景点B的正东方向2
3
千米处.
(Ⅰ)游客甲沿CA从景点C出发行至与景点B相距
7
千米的点P处,记∠PBC=α,求sinα的值;
(Ⅱ)甲沿CA从景点C出发前往景点A,乙沿AB从景点A出发前往景点B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时.若甲乙两人之间通过对讲机联系,对讲机在该景区内的最大通话距离为3千米,问有多长时间两人不能通话?(精确到0.1小时,参考数据:
5
≈2.2,
15
≈3.9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(-
π
2
-α)•cos(-
2
-α)=
60
169
,且
π
4
<α<
π
2
,求sinα与cosα的值.

查看答案和解析>>

同步练习册答案