精英家教网 > 高中数学 > 题目详情
16.某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?

分析 (Ⅰ)分析题意,本小题是一个建立函数模型的问题,可设水池的底面积为S1,池壁面积为S2,由题中所给的关系,将此两者用池底长方形长x表示出来.
(Ⅱ)此小题是一个花费最小的问题,依题意,建立起总造价的函数解析式,由解析式的结构发现,此函数的最小值可用基本不等式求最值,从而由等号成立的条件求出池底边长度,得出最佳设计方案

解答 解:(Ⅰ)设水池的底面积为S1,池壁面积为S2
则有${S_1}=\frac{6400}{4}=1600$(平方米).…2分
池底长方形宽为$\frac{1600}{x}$米,则S2=8x+8×$\frac{1600}{x}$=8(x+$\frac{1600}{x}$).…6分
(Ⅱ)设总造价为y,则
y=120×1 600+100×8(x+$\frac{1600}{x}$)≥192000+64000=256000.…9分
当且仅当x=$\frac{1600}{x}$,即x=40时取等号.…10分
所以x=40时,总造价最低为256000元.
答:当池底设计为边长40米的正方形时,总造价最低,其值为256000元.…12分.

点评 本题考查函数模型的选择与应用,解题的关键是建立起符合条件的函数模型,故分析清楚问题的逻辑联系是解决问题的重点,此类问题的求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知双曲线x2-my2=1的虚轴长是实轴长的3倍,则实数m的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设l,m,n表示三条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m?β,n是l在β内的射影,m⊥n,则m⊥l;
③若α⊥β,α⊥γ,则α∥β
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中a>0且a≠1,设h(x)=f(x)-g(x)
(1)求函数h(x)的定义域,判断h(x)的奇偶性并说明理由
(2)解不等式h(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C所对的边分别是a,b,c,“a>b”是“sinA>sinB”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.点M,N是抛物线E上的两动点,M到点(2,0)的距离比到直线x+3=0的距离少1,点O(M,N与O不重合)是坐标原点,OM⊥ON.
(Ⅰ)求抛物线E的标准方程;
(Ⅱ)在x轴上是否存在定点总在直线MN上,若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.log52•log425等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=alnx的导函数是f′(x)且f′(2)=2,则实数的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小明和小东两人比赛下象棋,小明不输的概率是$\frac{3}{4}$,小东输的概率是$\frac{1}{2}$,则两人和棋的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案