精英家教网 > 高中数学 > 题目详情
8.如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.
(1)求抛物线E的方程;
(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为角AGB的角平分线.

分析 (1)由抛物线定义可得:|AF|=2+$\frac{p}{2}$=3,解得p.即可得出抛物线E的方程.
(II)由点A(2,m)在抛物线E上,解得m,不妨取A(2,2$\sqrt{2}$),F(1,0),可得直线AF的方程,与抛物线方程联立化为2x2-5x+2=0,解得B($\frac{1}{2}$,-$\sqrt{2}$).又G(-1,0),计算kGA,kGB,可得kGA+kGB=0,∠AGF=∠BGF,即可证明GF为角AGB的角平分线.

解答 (1)解:由抛物线定义可得:|AF|=2+$\frac{p}{2}$=3,解得p=2.
∴抛物线E的方程为y2=4x;
(2)证明:∵点A(2,m)在抛物线E上,
∴m2=4×2,解得m=±2$\sqrt{2}$,不妨取A(2,2$\sqrt{2}$),F(1,0),
∴直线AF的方程:y=2$\sqrt{2}$(x-1),
联立$\left\{\begin{array}{l}{y=2\sqrt{2}(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,化为2x2-5x+2=0,解得x=2或$\frac{1}{2}$,B($\frac{1}{2}$,-$\sqrt{2}$).
又G(-1,0),∴kGA=$\frac{2\sqrt{2}}{3}$,kGB=-$\frac{2\sqrt{2}}{3}$,
∴kGA+kGB=0,
∴∠AGF=∠BGF,∴x轴平分∠AGB,即GF为角AGB的角平分线.

点评 本小题主要考查抛物线、直线与抛物线的位置关系及其性质等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD的底面为矩形,PA=AD=1,AB=2,且PA⊥平面ABCD,E,F分别为AB,PC的中点.
(Ⅰ)求证:EF⊥平面PCD;
(Ⅱ)求二面角C-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=lnx+\frac{a}{2}{x^2}-(a+1)x$.
(1)若曲线y=f(x)在x=1处的切线方程为y=-2,求f(x)的单调区间;
(2)若x>0时,$\frac{f(x)}{x}<\frac{f'(x)}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an},a1+a4+a7=π,则tan(a3+a5)的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\int_0^{\frac{π}{2}}{2xdx}$的值是(  )
A.$\frac{π^2}{4}$B.$-\frac{π^2}{4}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知锐角三角形ABC,下列三角函数值为负数的有②③ 个.
①$sin({\frac{π}{2}+B})$,②$cos({\frac{π}{2}+B})$,③tan(A+B),④cos(-B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数Z=-1+(1-i)2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值是$\frac{11}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等差数列{an}中,a4=-14,公差d=3,则n的取值为多少时,数列{an}的前n项和Sn最小?并求此最小值.

查看答案和解析>>

同步练习册答案