精英家教网 > 高中数学 > 题目详情
3.函数f(x)的定义域为R,“f(x)是奇函数”是“存在x∈R,f(x)+f(-x)=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由“f(x)是奇函数”⇒“存在x∈R,f(x)+f(-x)=0”,反之不成立.即可判断出结论.

解答 解:由“f(x)是奇函数”⇒“存在x∈R,f(x)+f(-x)=0”,反之不成立.
∴“f(x)是奇函数”是“存在x∈R,f(x)+f(-x)=0”的充分不必要条件.
故选:A.

点评 本题考查了奇函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.为配合上海迪斯尼游园工作,某单位设计人数的数学模型(n∈N+):以f(n)=$\left\{\begin{array}{l}{200n+2000,n∈[1,8]}\\{360•{3}^{\frac{n-8}{12}}+3000,n∈[9,32]}\\{32400-720n,n∈[33,45]}\end{array}\right.$表示第n时进入人数,以g(n)=$\left\{\begin{array}{l}{0,n[1,18]}\\{500n-9000,n∈[19,32]}\\{8800,n∈[33,45]}\end{array}\right.$表示第n个时刻离开园区的人数;设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即n=1:9点30分作为第2个计算单位,即n=2;依此类推,把一天内从上午9点到晚上8点15分分成45个计算单位:(最后结果四舍五入,精确到整数).
(1)试计算当天14点到15点这一个小时内,进入园区的游客人数f(21)+f(22)+f(23)+f(24)、离开园区的游客人数g(21)+g(22)+g(23)+g(24)各为多少?
(2)从13点45分(即n=19)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由:

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前项和为Sn,点(n,Sn)在函数f(x)=${∫}_{1}^{x}$(2t+1)dt的图象上,则数列{an}的通项公式为(  )
A.an=2nB.an=n2+n+2
C.an=$\left\{\begin{array}{l}{0,n=1}\\{2n-1,n≥2}\end{array}\right.$D.an=$\left\{\begin{array}{l}{0,n=1}\\{2n,n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一块边长为8cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,E为棱SA的中点,则DE与SC所成角的正切值为$\frac{6\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个说法:
①若向量{$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$}是空间的一个基底,则{$\overrightarrow{a}$+$\overrightarrow{b}$、$\overrightarrow{a}$-$\overrightarrow{b}$、$\overrightarrow{c}$}也是空间的一个基底.
②空间的任意两个向量都是共面向量.
③若两条不同直线l,m的方向向量分别是$\overrightarrow{a}$、$\overrightarrow{b}$,则l∥m?$\overrightarrow{a}$∥$\overrightarrow{b}$.
④若两个不同平面α,β的法向量分别是$\overrightarrow{u}$、$\overrightarrow{v}$,且$\overrightarrow{u}$=(1,2,-2)、$\overrightarrow{v}$=(-2,-4,4),则α∥β.
其中正确的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数集M={a1,a2,…,an}(0≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),ai+aj与aj-ai两数中至少有一个属于M.
(Ⅰ)分别判断数集{0,1,3}与{0,2,3,5}是否具有性质P,并说明理由;
(Ⅱ)证明:a1=0,且an=$\frac{2}{n}({a_1}+{a_2}+…+{a_{n-1}}+{a_n})$;
(Ⅲ)当n=5时,证明:a1,a2,a3,a4,a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),则tan(2π-α)的值为(  )
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数Z满足(2+i)•Z=3-i,则|Z|等于(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步练习册答案