精英家教网 > 高中数学 > 题目详情
9.已知f(x)=e2x+ln(x+a).
(Ⅰ)当a=1时,求f(x)在(0,1)处的切线方程;
(Ⅱ)若存在x0∈[0,+∞),使得$f({x_0})<2ln({{x_0}+a})+x_0^2$成立,求实数a的取值范围.

分析 (Ⅰ)求出f(x)的导数,可得切线的斜率,由斜截式方程即可得到所求切线的方程;
(Ⅱ)由题意可得存在x0∈[0,+∞),使得${e}^{2{x}_{0}}$-ln(x0+a)-x02<0,设u(x)=e2x-ln(x+a)-x2,两次求导,判断单调性,对a讨论,分①当a≥$\frac{1}{2}$时,②当a<$\frac{1}{2}$时,通过构造函数和求导,得到单调区间,可得最值,即可得到所求a的范围.

解答 解(Ⅰ)a=1时,f(x)=e2x+ln(x+1),
∴$f'(x)=2{e^{2x}}+\frac{1}{x+1}$,
∴f(0)=1,$f'(0)=2+\frac{1}{1}=3$,
∴f(x)在(0,1)处的切线方程为y=3x+1,
(Ⅱ)原问题??x0≥0使得${e^{2{x_0}}}-ln({{x_0}+a})-x_0^2<0$,
设u(x)=e2x-ln(x+a)-x2
$u'(x)=2{e^{2x}}-\frac{1}{x+a}-2x$$u'(x)=4{e^{2x}}+\frac{1}{{(x+a{)^2}}}-2>0$,
∴u'(x)在[0,+∞)单调增,
∴$u'(x)≥u'(0)=2-\frac{1}{a}$,
①当$a≥\frac{1}{2}$时,$u'(0)=2-\frac{1}{a}≥0$,
∴u(x)在[0,+∞)单调增,
∴u(x)min=u(0)=1-lna<0,
∴a>e,
②当$a<\frac{1}{2}$时,$ln({x+a})<ln({x+\frac{1}{2}})$,
设$h(x)=x-\frac{1}{2}-ln({x+\frac{1}{2}}),(x>0)$$h'(x)=1-\frac{1}{{x+\frac{1}{2}}}=\frac{{x-\frac{1}{2}}}{{x+\frac{1}{2}}}$,
另$h'(x)>0⇒x>\frac{1}{2},h'(x)<0⇒0<x<\frac{1}{2}$,
∴h(x)在$({0,\frac{1}{2}})$单调递减,在$({\frac{1}{2},+∞})$单调递增,
∴$h(x)≥h({\frac{1}{2}})=0$,
设$g(x)={e^{2x}}-{x^2}-({x-\frac{1}{2}}),(x>0)$,
g'(x)=2e2x-2x-1,g'′(x)=4e2x-2>4-2>0,
∴g'(x)在(0,+∞)单调递增,
∴g'(x)>g'(0)=1>0,
∴g(x)在(0,+∞)单调递增,
∴g(x)>g(0)>0,
∴${e^{2x}}-{x^2}>x-\frac{1}{2}>ln({x+\frac{1}{2}})>ln({x+a})$,
∴当$a<\frac{1}{2}$时,f(x)>2ln(x+a)+x2恒成立,不合题意,
综上可得,a的取值范围为(e,+∞).

点评 本题考查导数的运用:求切线的方程和单调区间、最值,注意运用构造函数法,运用单调性解决,考查存在性问题的解法,注意运用分类讨论的思想方法,以及转化思想,考查推理能力和运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知平面内三向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(-2,2)
(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(2)若 $(2\overrightarrow a+k\overrightarrow{c)}$∥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值;
(3)若$(2\overrightarrow a+k\overrightarrow{c)}$⊥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若角600°的终边上有一点(a,-3),则a的值是(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$α∈(0,π),sinα+cosα=\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求$cos(2α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD,O为棱AD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)求平面EBD与平面ABC所成的锐二面角的余弦值;
(Ⅱ)直线EA与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的参数方程为:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲线C2的极坐标方程为:ρ2(1+sin2θ)=8,
(I)写出C1的普通方程和C2的直角坐标方程;
(II)若C1与C2交于两点A,B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足关系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,则$z=\frac{1}{2}x-y$的取值范围为(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(x+a)lnx,g(x)=$\frac{{x}^{2}}{{e}^{x}}$,已知曲线y=f(x)在点(1,f(1))处的切线与直线2x-y=0平行.
(Ⅰ)若方程f(x)=g(x)在(k,k+1)(k∈N)内存在唯一的根,求出k的值.
(Ⅱ)设函数m(x)=min{f(x),g(x)}(min{p、q})表示p,q中的较小值),求m(x)的最大值.

查看答案和解析>>

同步练习册答案