分析 (Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1,然后求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;
(Ⅱ)由(Ⅰ)求得m(x)的解析式,通过求g(x)的最大值,即可得到m(x)的最大值.
解答 解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+$\frac{a}{x}$,
曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,
由切线与直线2x-y=0平行,得a+1=2,解得a=1,
∴f(x)=(x+1)lnx,f′(x)=lnx+1+$\frac{1}{x}$,
令h(x)=lnx+1+$\frac{1}{x}$,h′(x)=$\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,
当x>1时,h′(x)>0,h(x)在(1,+∞)递增.
当x=1时,h(x)min=h(1)=2>0,即f′(x)>0,
f(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,
g(x)=$\frac{{x}^{2}}{{e}^{x}}$的导数为g′(x)=$\frac{x(2-x)}{{e}^{x}}$,
当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,
当x>2时,g′(x)<0,g(x)在(2,+∞)递减.
则x=2取得最大值,
令T(x)=f(x)-g(x)=(x+1)lnx-$\frac{{x}^{2}}{{e}^{x}}$,
T(1)=-$\frac{1}{e}$<0,T(2)=3ln2-$\frac{4}{{e}^{2}}$>0,
T(x)的导数为T′(x)=lnx+1+$\frac{1}{x}-\frac{2x-{x}^{2}}{{e}^{x}}$,
由1<x<2,通过导数可得lnx>1-$\frac{1}{x}$,即有lnx+1+$\frac{1}{x}$>2;
ex>1+x,可得-$\frac{2x-{x}^{2}}{{e}^{x}}$>$\frac{{x}^{2}-2x}{1+x}$,
可得lnx+1+$\frac{1}{x}$-$\frac{2x-{x}^{2}}{{e}^{x}}$>2+$\frac{{x}^{2}-2x}{1+x}$=$\frac{2+{x}^{2}}{1+x}$>0,
即为T′(x)>0在(1,2)成立,
则T(x)在(1,2)递增,
由零点存在定理可得,存在自然数k=1,
使得方程f(x)=g(x)在(k,k+1)内存在唯一的根,故k=1;
(Ⅱ)由(Ⅰ)知,m(x)=$\left\{\begin{array}{l}{(x+1)lnx,0<x≤{x}_{0}}\\{\frac{{x}^{2}}{{e}^{x}},x>{x}_{0}}\end{array}\right.$,其中x0∈(1,2),
且x=2时,g(x)取得最大值,且为g(2)=$\frac{4}{{e}^{2}}$,
则有m(x)的最大值为m(2)=$\frac{4}{{e}^{2}}$.
点评 本题考查导数的运用:求切线方程和单调区间、极值,同时考查零点存在定理和分段函数的最值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | (-∞,-1) | C. | [2,+∞) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3×4100-3 | B. | 3×4100 | C. | 2×4100 | D. | 2×4100-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$$⊥\overrightarrow{b}$ | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | C. | $\overrightarrow{a}$⊥($\overrightarrow{a}$$-\overrightarrow{b}$) | D. | $\overrightarrow{a}$∥($\overrightarrow{a}$$-\overrightarrow{b}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com