精英家教网 > 高中数学 > 题目详情
5.将偶数按如图所示的规律排列下去,且用amn表示位于从上到下第m行,从左到右n列的数,比如a22=6,a43=18,若amn=2016,则有   (  )
A.m=44,n=28B.m=44,n=29C.m=45,n=28D.m=45,n=29

分析 根据题目中给出的图形,归纳总结出各行各列的排列次序与总个数的变化规律,进而根据amn=2016,构造相应的不等式和方程,可得m,n值.

解答 解:由图形可知:
第1行1个偶数,
第2行2个偶数,

第n行n个偶数;
∵2016是第1008个偶数,
设它在第m行,则之前已经出现了m-1行,共1+2+…+(m-1)个偶数,
∴$\frac{1}{2}$m(m-1)<1008,
解得n<45,
∴2016在第45行,
∵前44行有990个偶数,
∴2016在第45行,
又由奇数列是从右到到,依次排列的,且第45列共有45个偶数,
由45-($\frac{2016}{2}$-990)+1=28,
可得2016位于第45行第28列,
故m=45,n=28,
故选:C

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2ax2+3b(a,b∈R),若对于任意x∈[-1,1],都有|f(x)|≤1成立,则ab的最大值是$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x-1-alnx(a<0),g(x)=$\frac{4}{x}$,若对任意x1,x2∈(0,1]都有|f(x1)-f(x2)|≤|g(x1)-g(x2)|成立,则实数a的取值范围为[-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{AB}=({1,2}),\overrightarrow{AC}=({4,3})$,动点P满足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,且λμ≥0,|λ+μ|≤1,点P所在平面区域的面积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.到定点(2,0)的距离与到定直线x=8的距离之比为$\frac{{\sqrt{2}}}{2}$的动点的轨迹方程为x2+2y2+8x-56=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是一个算法的流程图,若输入x=2,则输出k的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),求圆C上的点到直线ρsin(θ+$\frac{π}{3}$)=-2距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn且满足Sn+an=2n.
(1)写出a1,a2,a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x2+bx,g(x)=|x-1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)-f(x2)<g(x1)-g(x2),则实数b的最小值为-1.

查看答案和解析>>

同步练习册答案