精英家教网 > 高中数学 > 题目详情
7.已知数列{an}满足a1+2a2+22a3+…+2n-1an=n(n∈N*),又等差数列{bn}满足b1=a1,b1+1,b2+1,b5-1成等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn

分析 (1)由等式,可令n=1,求得a1=1;当n≥2时,将n换为n-1,相减可得数列{an}的通项公式;再由等差数列{bn}的公差设为d,运用等比数列的中项性质,解方程可得公差d,进而得到{bn}的通项公式;
(2)求得anbn=(2n-1)•($\frac{1}{2}$)n-1,再由数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(1)a1+2a2+22a3+…+2n-1an=n,①
可得n=1时,a1=1;
当n≥2时,a1+2a2+22a3+…+2n-2an-1=n-1,②
①-②可得2n-1an=1,
即有an=($\frac{1}{2}$)n-1(n≥2),
对n=1也成立,
则an=($\frac{1}{2}$)n-1(n∈N*),
设等差数列{bn}的公差为d,
b1=a1=1,b1+1=2,b2+1=2+d,b5-1=4d,
b1+1,b2+1,b5-1成等比数列成等比数列,
可得(2+d)2=8d,
解得d=2,
bn=b1+(n-1)d=1+2(n-1)=2n-1(n∈N*);
(2)anbn=(2n-1)•($\frac{1}{2}$)n-1
Sn=1+3•($\frac{1}{2}$)+5•($\frac{1}{2}$)2+…+(2n-1)•($\frac{1}{2}$)n-1
$\frac{1}{2}$Sn=$\frac{1}{2}$+3•($\frac{1}{2}$)2+5•($\frac{1}{2}$)3+…+(2n-1)•($\frac{1}{2}$)n
两式相减可得$\frac{1}{2}$Sn=1+2[$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1]-(2n-1)•($\frac{1}{2}$)n
=1+$\frac{2×\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•($\frac{1}{2}$)n=3-(2n+3)•($\frac{1}{2}$)n
即为Sn=6-(2n+3)•($\frac{1}{2}$)n-1

点评 本题考查等差数列和等比数列的通项公式和性质的运用,考查数列的求和方法:错位相减法,同时考查等比数列的求和公式的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.“m=1”是“直线l1:x+(1+m)y=2-m与l2:2mx+4y=-16平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A、B、C的对边分别为a、b、c,已知a=bcosC+$\sqrt{3}$csinB.
(1)求角B;
(2)若b=1,c=$\sqrt{3}$,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,-1),则$\frac{|\overrightarrow{a}+\overrightarrow{b}|}{\overrightarrow{b}•(\overrightarrow{a}-\overrightarrow{b})}$等于(  )
A.-$\frac{5}{3}$B.-1C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,(2$\overline{a}$$-\overrightarrow{b}$)$•\overrightarrow{b}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.120°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(1-x)(1+$\frac{1}{\sqrt{x}}$)8的展开式中x-3的系数为(  )
A.30B.29C.28D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{{x}^{2}+a}{x+1}$在x=l处取得极值,则a=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5本不同的中文书,4本不同的数学书,3本不同的英语书,每次取一本,不同取法有(  )种.
A.3B.12
C.60D.不同于以上的答案

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设0<x<$\frac{π}{2}$,记a=1+ln(sinx),b=sinx,c=esinx-1,则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

同步练习册答案